Package 'Lock5Data'

June 30, 2017

Type Package
Title Datasets for "Statistics: UnLocking the Power of Data"
Version 2.8
Date 2017-06-30
Author Robin Lock
Maintainer Robin Lock rlock@stlawu.edu
Description Datasets for "'Statistics: Unlocking the Power of Data" by Lock^5
Datasets for the first and second editions of the book. Older editions of revised data of-ten have an extra 1 e in the name.
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
R topics documented:
Lock5Data-package 4
ACS 4
AllCountries 5
AllCountries1e 6
APMultipleChoice 7
April14Temps 7
April14Tempsle 8
BaseballHits 8
BaseballHits1e 9
BaseballSalaries2015 10
BaseballTimes 10
Benford 11
BikeCommute 11
BodyFat 12
BodyTemp50 13
BootAtlantaCorr 13
CaffeineTaps 14
CAOSExam 14
CarbonDioxide 15
CarDepreciation 15
Cars2015 16
Cereal 17
CityTemps 17
CocaineTreatment 18
ColaCalcium 18
CommuteAtlanta 19
CommuteStLouis 20
CompassionateRats 20
CricketChirps 21
DDS 21
DecemberFlights 22
Digits 22
DogOwner 23
DrugResistance 24
EducationLiteracy 24
ElectionMargin 25
ElectionMargin1e 25
EmployedACS 26
ExerciseHours 27
FacebookFriends 27
FatMice18 28
FireAnts 28
FisherIris 29
FishGills12 29
FishGills3 30
Flight179 30
Flight433 31
FloridaLakes 31
FootballBrain 32
GeneticDiversity 33
GlobalInternet 33
GPAGender 34
GSWarriors 35
HappyPlanetIndex 36
HeightData 36
HockeyPenalties 37
HollywoodMovies 38
HollywoodMovies2011 38
HomesForSale 39
HomesForSaleCA 40
HomesForSaleCanton 40
HomesForSaleNY 41
Honeybee 41
HoneybeeCircuits 42
HoneybeeWaggle 42
HotDogs 43
HotDogsle 43
HouseStarts 44
Hurricanes 44
ICUAdmissions 45
ImmuneTea 46
R topics documented: 3
InkjetPrinters 46
LifeExpectancyVehicles 47
LifeExpectancyVehicles1e 47
LightatNight 48
LightatNight4Weeks 49
LightatNight8Weeks 49
MalevolentUniformsNFL 50
MalevolentUniformsNHL 51
MammalLongevity 51
ManhattanApartments 52
MarriageAges 52
MastersGolf 53
MateChoice 53
MentalMuscle 54
MiamiHeat 54
MindsetMatters 56
MustangPrice 56
NBAPlayers2011 57
NBAPlayers2015 58
NBAStandings1e 59
NBAStandings2016 59
NFLContracts2015 60
NFLPreSeason 61
NFLScores2011 61
NutritionStudy 62
OlympicMarathon 63
OlympicMarathonle 63
OrganicEffect 64
OttawaSenators 64
OttawaSenators1e 65
PizzaGirl 65
QuizPulse10 66
RandomP50N200 66
RestaurantTips 67
RetailSales 68
RockandRoll 68
RockandRollle 69
SalaryGender 69
SampCountries 70
SampCountries1e 71
SandP500 71
SandP5001e 72
SandwichAnts 73
SandwichAnts2 73
SkateboardPrices 74
SleepCaffeine 74
SleepStudy 75
Smiles 76
SpeedDating 77
SplitBill 78
StatGrades 78
StatisticsPhD 79
StockChanges 79
StorySpoilers 80
StressedMice 80
StudentSurvey 81
SynchronizedMovement 82
TenCountries 82
TenCountries1e 83
TextbookCosts 84
ToenailArsenic 84
TrafficFlow 85
USStates 85
USStates1e 86
WaterStriders 87
WaterTaste 88
Wetsuits 88
YoungBlood 89
Index 90
Lock5Data-package Lock5 Datasets

Description

Datasets for first and second editions of Statistics: Unlocking the Power of Data by Lock^5

Details

Package:	Lock5Data
Type:	Package
Version:	2.8
Date:	$2017-06-30$
License:	GPL-2
LazyLoad:	yes

Author(s)

Robin Lock
Maintainer: Robin Lock rlock@stlawu.edu

Description

Data from a sample of individuals in the American Community Survey

Format

A dataset with 1000 observations on the following 9 variables.

$$
\begin{aligned}
& \text { Sex } 0=\text { female and } 1=\text { male } \\
& \text { Age Age (years) } \\
& \text { Married } 0=\text { not married and } 1=\text { married } \\
& \text { Income Wages and salary for the past } 12 \text { months (in } \$ 1,000 \text { 's) } \\
& \text { HoursWk Hours of work per week } \\
& \text { Race asian, black, white, or other } \\
& \text { USCitizen } \quad 1=\text { citizen and } 0=\text { noncitizen } \\
& \text { HealthInsurance } 1=\text { have health insurance and } 0=\text { no health insurance } \\
& \text { Language } 1=\text { native English speaker and } 0=\text { other }
\end{aligned}
$$

Details

The American Community Survey, administered by the US Census Bureau, is given every year to a random sample of about 3.5 million households (about 3% of all US households). Data on a random sample of 1% of all US residents are made public (after ensuring anonymity), and we have selected a random sub-sample of $\mathrm{n}=1000$ from the 2010 data for this dataset.

Source

The full public dataset can be downloaded at http://www.census.gov/acs/www/data documentation/pums data/, and the full list of variables are at http://www.census.gov/acs/www/Downloads/data documentation/pums/DataDict/PUMSDataDict10.pdf.

AllCountries AllCountries

Description

Data on the countries of the world

Format

A dataset with 215 observations on the following 25 variables.

Country	Name of the country
LandArea	Size in 1000 sq. kilometers
Population	Population in millions
Density	Number of people per square kilometer
GDP	Gross Domestic Product (in \$US) per capita
Rural	Percentage of population living in rural areas
CO2	CO2 emissions (metric tons per capita)
PumpPrice	Price for a liter of gasoline (\$US)
Military	Percentage of government expenditures directed toward the military
Health	Percentage of government expenditures directed towards healthcare
ArmedForces	Number of active duty military personnel (in 1,000's)
Internet	Percentage of the population with access to the internet

```
                    Cell Cell phone subscriptions (per 100 people)
                    HIV Percentage of the population with HIV
            Hunger Percent of the population considered undernourished
            Diabetes Percent of the population diagnosed with diabetes
            BirthRate Births per 1000 people
            DeathRate Deaths per 1000 people
            ElderlyPop Percentage of the population at least 65 years old
LifeExpectancy Average life expectancy (years)
            FemaleLabor Percent of females 15-64 in the labor force
Unemployment Percent of labor force unemployed
            Energy Energy usage (kilotons of oil equivalent)
    Electricity Electric power consumption (kWh per capita)
        Developed Categories for kilowatt hours per capita, 1= under 2500, 2=2500 to 5000, 3=over 5000
```


Details

Data for each variable were collected for years between 2012 and 2014. Within a variable all country measurements are from the same year, but the year may vary betwen different variables depending on availabilty.
** This daatset is updated from an earlier version (now Allcountries1e) **

Source

Data collected from the World Bank website, worldbank.org.

```
AllCountries1e AllCountries - le
```


Description

Data on the countries of the world

Format

A dataset with 213 observations on the following 18 variables.

```
            Country Name of the country
            Code Three letter country code
        LandArea Size in sq. kilometers
        Population Population in millions
            Energy Energy usage (kilotons of oil)
            Rural Percentage of population living in rural areas
            Military Percentage of government expenditures directed toward the military
            Health Percentage of government expenditures directed towards healthcare
                    HIV Percentage of the population with HIV
            Internet Percentage of the population with access to the internet
            Developed Categories for kilowatt hours per capita, 1= under 2500, 2=2500 to 5000, 3=over 5000
            BirthRate Births per 1000 people
            ElderlyPop Percentage of the population at least 65 years old
LifeExpectancy Average life expectancy (years)
```


CO 2 CO 2 emissions (metric tons per capita)
 GDP Gross Domestic Product (per capita)
 Cell Cell phone subscriptions (per 100 people)
 Electricity Electric power consumption (kWh per capita)

Details

Most data from 2008 to avoid many missing values in more recent years.
** From 1e - dataset has been updated for $2 \mathrm{e}^{* *}$

Source

Data collected from the World Bank website, worldbank.org.

```
APMultipleChoice AP Multiple Choice
```


Description

Correct responses on Advanced Placement multiple choice exams

Format

A dataset with 400 observations on the following variable.
Answer Correct response: A, B, C, D, or E

Details

Correct responses from multiple choice sections for a sample of released Advanced Placement exams

Source

Sample exams from several disciplines at http://apcentral.collegeboard.com

April14Temps April 14th Temperatures

Description

Temperatures in Des Moines, IA and San Francisco, CA on April 14th

Format

A dataset with 21 observations on the following 3 variables.

$$
\begin{aligned}
\text { Year } & 1995 \text { to } 2015 \\
\text { DesMoines } & \text { Temperature in Des Moines (degrees F) } \\
\text { SanFrancisco } & \text { Temperature in San Francisco (degrees F) }
\end{aligned}
$$

Details

Average temperature for the day of April 14th in each of 21 years from 1995-2015
** Data set updated for 2 e (original is now April14Temps1e) **

Source

The University of Dayton Average Daily Temperature Archive at http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm

```
April14Temps1e April 14th Temperatures -le
```


Description

Temperatures in Des Moines, IA and San Francisco, CA on April 14th

Format

A dataset with 16 observations on the following 3 variables.

Year	1995-2010
DesMoines	Temperature in Des Moines (degrees F)
SanFrancisco	Temperature in San Francisco (degrees F)

Details

Average temperature for the day of April 14th in each of 16 years from 1995-2010
** From $1 \mathrm{e}-$ dataset has been updated for $2 \mathrm{e}^{* *}$

Source

The University of Dayton Average Daily Temperature Archive at http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm
BaseballHits \quad Baseball Hits

Description

Number of hits, wins, and other stats for MLB teams - 2014

Format

A dataset with 30 observations on the following 14 variables.

Team	Name of baseball team (3-character code)
League	Either AL or NL
Wins	Number of wins for the season
Runs	Number of runs scored

Hits Number of hits
Doubles Number of doubles
Triples Number of triples
HomeRuns Number of home runs
RBI Number of runs batted in
StolenBases Number of stolen bases
CaughtStealing Number of times caught stealing
Walks Number of walks
Strikeouts Number of stikeouts
BattingAvg Team batting average

Details

Data from the 2014 Major League Baseball regular season.
** Updated for 2e (original is now BaseballHits1e)

Source

http://www.baseball-reference.com/leagues/MLB/2014-standard-batting.shtml

BaseballHits1e Baseball Hits

Description

Number of hits, wins, and other stats for MLB teams - 2011

Format

A dataset with 30 observations on the following 14 variables.

Team League	Name of baseball team Either American AL or National NL League Wins
Runs	Number of wins for the season
Hits	Number of hits scored
Doubles	Number of doubles
Triples	Number of triples
HomeRuns	Number of home runs
RBI	Number of runs batted in
StolenBases	Number of stolen bases
CaughtStealing	Number of times caught stealing
Walks	Number of walks
Strikeouts	Number of stikeouts
BattingAvg	Team batting average

Details

Data from the 2010 Major League Baseball regular season.
** From 1 e - dataset has been updated for $2 \mathrm{e}^{* *}$

Source

http://www.baseball-reference.com/leagues/MLB/2011-standard-batting.shtml

BaseballSalaries2015 MLB Player Salaries in 2015

Description

Opening Day salaries for all Major League Baseball players in 2015

Format

A dataset with 868 observations on the following 4 variables.

Name	Player's name
Salary	2015 season salary (in millions)
Team	Abbreviated team name
Position	Code for player's main position

Details

Yearly salary (in millions of dollars) for all players on the rosters of Major League Baseball teams at the start of the 2015 season.

Source

http://www.usatoday.com/sports/mlb/salaries
BaseballTimes Baseball Game Times

Description

Information for a sample of 30 Major League Baseball games played during the 2011 season

Format

A dataset with 30 observations on the following 9 variables.

Away	Away team name
Home	Home team name
Runs	Total runs scored (both teams)
Margin	Margin of victory

$$
\begin{aligned}
\text { Hits } & \text { Total number of hits (both teams) } \\
\text { Errors } & \text { Total number of errors (both teams) } \\
\text { Pitchers } & \text { Total number of pitchers used (both teams) } \\
\text { Walks } & \text { Total number of walks (both teams) } \\
\text { Time } & \text { Elapsed time for game (in minutes) }
\end{aligned}
$$

Details

Data from a sample of boxscores for Major League Baseball games played in August 2011.

Source

http://www.baseball-reference.com/boxes/2011.shtml
Benford Benford data

Description

Two examples to test Benford's Law

Format

A dataset with 9 observations on the following 4 variables.
Digit Leading digit (1-9)
BenfordP Expected proportion according to Benford's law
Address Frequency as a first digit in an address
Invoices Frequency as the first digit in invoice amounts

Details

Leading digits from 1188 addresses sampled from a phone book and 7273 amounts from invoices sampled at a company.

Source

Thanks to Prof. Richard Cleary for providing the data
BikeCommute Bike Commute

Description

Commute times for two kinds of bicycle

Format

A dataset with 56 observations on the following 9 variables.

```
            Bike Type of material Carbon or Steel
            Date Date of the bike commute
Distance Length of commute (in miles)
            Time Total commute time (hours:minutes:seconds)
    Minutes Time converted to minutes
AvgSpeed Average speed during the ride (miles per hour)
TopSpeed Maximum speed (miles per hour)
    Seconds Time converted to seconds
            Month Categories: 1Jan 2Feb 3Mar 4Apr 5May 6June 7July
```


Details

Data from a personal experiment to compare commuting time based on a randomized selection between two bicycles made of different materials.

Source

Thanks to Dr. Groves for providing his data.

References

Bicycle weight and commuting time: randomised trial, in British Medical Journal, BMJ 2010;341:c6801.

> BodyFat Body Measurements

Description

Percent fat and other body measurements for a sample of men

Format

A dataset with 100 observations on the following 10 variables.

Bodyfat	Percent body fat
Age	Age in years
Weight	Weight in pounds
Height	Height in inches
Neck	Neck circumference in cm.
Chest	Chest circumference in cm.
Abdomen	Abdomen cirumference in cm.
Ankle	Ankle circumference in cm.
Biceps	Exended biceps circumference in cm.
Wrist	Wrist circumference in cm.

Details

This is a subset of a larger sample of men who each had a percent body fat estimated by an underwater weighing technique. Other measurements were taken to see how they might be used to predict the body fat percentage.

Source

These data were contributed by Roger Johnson, then at Carleton University, to the Datasets Archive at the Journal of Statistics Education.
https://ww2.amstat.org/publications/jse/v4n1/datasets.johnson.html
The data were originally supplied by Dr. A. Garth Fisher, Human Performance Research Center, Brigham Young University, Provo, Utah 84602.

```
BodyTemp50 Body Temperatures
```


Description

Sample of 50 body temperatures

Format

A dataset with 50 observations on the following 3 variables.

BodyTemp	Body temperature in degrees F
Pulse	Pulse rates (beat per minute)
Gender	$\mathrm{F}=$ Female, $\mathrm{M}=$ Male

Details

Body temperatures and pulse rates for a sample of 50 healthy adults.

Source

Shoemaker, What's Normal: Temperature, Gender and Heartrate, Journal of Statistics Education, Vol. 4, No. 2 (1996)

BootAtlantaCorr Bootstrap Correlations for Atlanta Commutes

Description

Bootstrap correlations between Time and Distance for 500 commuters in Atlanta

Format

A dataset with 1000 observations on the following variable.
CorrTimeDist Correlation between Time and Distance for a bootstrap sample of Atlanta commuters

Details

Correlations for bootstrap samples of Time vs. Distance for the data on Atlanta commuters in CommuteAtlanta.

Source

Computer simulation

CaffeineTaps Caffeine Taps

Description

Finger tap rates with and without caffeine

Format

A dataset with 20 observations on the following 2 variables.

$$
\begin{aligned}
\text { Taps } & \text { Number of finger taps in one minute } \\
\text { Group } & \text { Treatment with levels Caffeine NoCaffeine }
\end{aligned}
$$

Details

Results from a double-blind experiment where a sample of male college students were asked to tap their fingers at a rapid rate. The sample was then divided at random into two groups of ten students each. Each student drank the equivalent of about two cups of coffee, which included about 200 mg of caffeine for the students in one group but was decaffeinated coffee for the second group. After a two hour period, each student was tested to measure finger tapping rate (taps per minute). The goal of the experiment was to determine whether caffeine produces an increase in the average tap rate.

Source

Hand, Daly, Lund, McConway and Ostrowski, Handbook of Small Data Sets, Chapman and Hall, London (1994), pp. 40

```
CAOSExam CAOS Exam Scores
```


Description

Scores on a pre-test and post-test of basic statistics concepts

Format

A dataset with 10 observations on the following 3 variables.

Student	ID code for student
Pretest	CAOS Pretest score
Posttest	CAOS Posttest score

Details

The CAOS (Comprehensive Assessment of Outcomes in First Statistics Course) exam is designed to measure comprehension of basic statistical ideas in an introductory statistics course. This dataset has scores for ten students who took the CAOS pre-test at the start of a course and the post-test during the course itself. Each exam consists of 40 multiple choice questions and the score is the percentage correct.

Source

A sample of 10 students from an introductory statisics course. Find out more about the CAOS exam at http://app.gen.umn.edu/artist/caos.html

```
CarbonDioxide Carbon Dioxide Levels
```


Description

Atmospheric carbon dioxide levels by year

Format

A dataset with 11 observations on the following 2 variables.

$$
\begin{aligned}
\text { Year } & \text { Every five years from } 1960 \text { to } 2010 \\
\text { c02 } & \text { Carbon dioxide level in parts per million }
\end{aligned}
$$

Details

Carbon dioxide levels in the atmosphere over a 50 year span from 1960-2010.

Source

Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/). Values recorded at the Mauna Loa Observatory in Hawaii.

CarDepreciation Car Depreciation

Description

Depreciation for 20 car models.

Format

A dataset with 20 observations on the following 4 variables.

Car	Name of the car model
New	Price of a new car

Used Value after new car leaves the lot after purchase Depreciation Drop in value when a new car is driven away

Details

Twenty car models were selected at random from kellybluebook.com. Original price (in dollars) and value after the car has been driven 10 miles were recorded for each model. The depreciation is the difference (New-Used).

Source

New and used automobile costs determined using 2015 models selected from kellybluebook.com.
Cars2015 2015 Car Models

Description

Information about new car models in 2015

Format

A dataset with 110 observations on the following 24 variables.

```
            Make Manufacturer (e.g. Chevrolet, Toyota, etc.)
            Model Car model (e.g. Impala, Prius, ...)
            Type Vehicle category (Small, Hatchback, Sedan, Sporty, Wagon, SUV, 7Pass)
        LowPrice Lowest MSRP (in $1,000)
        HighPrice Highest MSRP (in $1,000)
            Drive Type of drive (FWD, RWD, AWD)
            CityMPG City miles per gallon (EPA)
            HwyMPG Highway miles per gallon (EPA)
            FuelCap Fuel capacity (in gallons)
                Length Length (in inches)
                Width Width (in inches)
            Height Height (in inches)
                Wheelbase Wheelbase (in inches)
            UTurn Diameter (in feet) needed for a U-turn
            Weight Curb weight (in pounds)
            Acc030 Time (in seconds) to go from 0 to 30 mph
            Acc060 Time (in seconds) to go from 0 to 60 mph
            QtrMile Time (in seconds) to go }1/4\mathrm{ mile
            PageNum Page number in the Consumer Reports New Car Buying Guide
                Size Small,Midsized, or Large
```


Details

Data for a set of 110 new car models in 2015 based on information in the Consumer Reports New Car Buying Guide.

Source

Consumer Reports 2015 New Car Buying Guide
http://www.magastack.com/issue/6053-consumer-reports-new-car-buying-guide-february-2015?page=1 http://www.consumerreports.org/cro/cars/compare.htm?add=true \&product=new/chevrolet/impala

Cereal Breakfast Cereals

Description

Nutrition information for a sample of 30 breakfast cereals

Format

A dataset with 30 observations on the following 10 variables.

Name	Brand name of cereal
Company	Manufacturer coded as G=General Mills, K=Kellog's or Q=Quaker
Serving	Serving size (in cups)
Calories	Calories (per cup)
Fat	Fat (grams per cup)
Sodium	Sodium (mg per cup)
Carbs	Carbohydrates (grams per cup)
Fiber	Dietary Fiber (grams per cup)
Sugars	Sugars (grams per cup)
Protein	Protein (grams per cup)

Details

Nutrition contents for a sample of breakfast cereals, derived from nutrition labels. Values are per cup of cereal (rather than per serving).

Source

Cereal data obtained from nutrition labels at
http://www.nutritionresource.com/foodcomp2.cfm?id=0800

$$
\text { CityTemps } \quad \text { City Temperatures }
$$

Description

Mean monthly temperature in Moscow, Melbourne, and San Francisco for 2014 and 2015

Format

A dataset with 24 observations on the following 5 variables.

```
                    Year 2014 or 2015
                    Month 1=January to 12=December
            Moscow Monthly temperatures in Moscow (Russia)
            Melbourne Monthly temperatures in Melbourne (Australia)
SanFrancisco Monthly temperatures in San Francisco (United States)
```


Details

Mean monthly temperatures in degrees Celsius for the years 2014 and 2015 in each of three cities.

Source

KNMI Climate Explorer at https://climexp.knmi.nl/selectstation.cgi?id=someone@somewhere

CocaineTreatment Cocaine Treatment

Description

Relapse/no relapse responses to three different treatments for cocaine addiction

Format

A dataset with 72 observations on the following 2 variables.

$$
\begin{aligned}
\text { Drug } & \text { Treatment drug: Desipramine, Lithium, or Placebo } \\
\text { Relapse } & \text { Did the patient relapse? no or yes }
\end{aligned}
$$

Details

Data from an experiment to investigate the effectiveness of the two drugs, desipramine and lithium, in the treatment of cocaine addiction. Subjects (cocaine addicts seeking treatment) were randomly assigned to take one of the treatment drugs or a placebo. The response variable is whether or not the subject relapsed (went back to using cocaine) after the treatment.

Source

Gawin, F., et.al., "Desipramine Facilitation of Initial Cocaine Abstinence", Archives of General Psychiatry, 1989; 46(2): 117-121.

```
ColaCalcium

\section*{Description}

Calcium excretion with diet cola and water

\section*{Format}

A dataset with 16 observations on the following 2 variables.
\[
\begin{aligned}
\text { Drink } & \text { Type of drink: Diet cola or Water } \\
\text { Calcium } & \text { Amount of calcium excreted (in mg.) }
\end{aligned}
\]

\section*{Details}

A sample of 16 healthy women aged 18-40 were randomly assigned to drink 24 ounces of either diet cola or water. Their urine was collected for three hours after ingestion of the beverage and calcium excretion (in mg.) was measured. The researchers were investigating whether diet cola leaches calcium out of the system, which would increase the amount of calcium in the urine for diet cola drinkers.

\section*{Source}

Larson, Amin, Olsen, and Poth, Effect of Diet Cola on Urine Calcium Excretion, Endocrine Reviews, 31[3]: S1070, June 2010. These data are recreated from the published summary statistics, and are estimates of the actual data.
```

CommuteAtlanta Commute Atlanta

```

\section*{Description}

Commute times and distances for a sample of 500 people in Atlanta

\section*{Format}

A data frame with 500 observations on the following 5 variables.
\begin{tabular}{rl} 
City & Atlanta \\
Age & Age of the respondent (in years) \\
Distance & Commute distance (in miles) \\
Time & Commute time (in minutes) \\
Sex & F or M
\end{tabular}

\section*{Details}

Data from the US Census Bureau's American Housing Survey (AHS) which contains information about housing and living conditions for samples from certain metropolitan areas. These data were extracted from respondents in the Atlanta metropolitan area. They include only cases where the respondent worked somewhere other than home. Values show the time (in minutes) and distance (in miles) that respondents typically traveled on their commute to work each day as well as age and sex.

\section*{Source}

Sample chosen using DataFerret at http://www.thedataweb.org/index.html.
```

CommuteStLouis Commute Times in St. Louis

```

\section*{Description}

Commute times and distances for a sample of 500 people in St. Louis

\section*{Format}

A dataset with 500 observations on the following 5 variables.
\begin{tabular}{rl} 
City & St. Louis \\
Age & Age of the respondent (in years) \\
Distance & Commute distance (in miles) \\
Time & Commute time (in minutes) \\
Sex & F or M
\end{tabular}

\section*{Details}

Data from the US Census Bureau's American Housing Survey (AHS) which contains information about housing and living conditions for samples from certain metropolitan areas. These data were extracted from espondents in the St. Louis metropolitan area. They include only cases where the respondent worked somewhere other than home. Values show the time (in minutes) and distance (in miles) that respondents typically traveled on their commute to work each day as well as age and sex.

\section*{Source}

Sample chosen using DataFerret at http://www.thedataweb.org/index.html.
CompassionateRats Compassionate Rats

\section*{Description}

Would a rat attempt to free a trapped rat?

\section*{Format}

A dataset with 30 observations on the following 2 variables.
Sex Sex of the rat: coded as F or M
Empathy Freed the trapped rat? no or yes

\section*{Details}

In a recent study, some rats showed compassion by freeing another trapped rat, even when chocolate served as a distraction and even when the rats would then have to share the chocolate with their freed companion.

\section*{Source}

Bartal I.B., Decety J., and Mason P., "Empathy and Pro-Social Behavior in Rats," Science, 2011; 224(6061):1427-1430.
```

CricketChirps
Cricket Chirps

```

\section*{Description}

Cricket chirp rate and temperature

\section*{Format}

A dataset with 7 observations on the following 2 variables.
Temperature Air temperature in degrees F
Chirps Cricket chirp rate (chirps per minute)

\section*{Details}

The data were collected by E.A. Bessey and C.A. Bessey who measured chirp rates for crickets and temperatures during the summer of 1898.

\section*{Source}

From E.A Bessey and C.A Bessey, Further Notes on Thermometer Crickets, American Naturalist, (1898) 32, 263-264.

DDS Develomental Services

\section*{Description}

Funding for individuals by the California Department of Developmental Services (DDS),

\section*{Format}

A dataset with 1000 observations on the following 6 variables.
\begin{tabular}{rl} 
ID & ID code for subject \\
AgeCohort & Age group \((0-5,6-12,13-17,18-21,22-50,50+)\) \\
Age & Age in years
\end{tabular}

Expenditures Annual expenditures in dollars
Ethnicity Ethnic group

\section*{Details}

The California Department of Developmental Services (DDS) allocates funds to support developmentally disabled California residents (such as those with autism, cerebral palsy, or intellectual disabilities) and their families. We refer to those supported by DDS as DDS consumers. The dataset DDS includes data on annual expenditure (in \$), ethnicity, age, and gender for 1000 DDS consumers.

\section*{Source}

Taylor, S.A. and Mickel, A. E. (2014). "Simpson's Paradox: A Data Set and Discrimination Case Study Exercise," Journal of Statistics Education, 22(1). The dataset has been altered slightly for privacy reasons, but is based on actual DDS consumers.

\section*{DecemberFlights December Flights}

\section*{Description}

Difference between actual and scheduled arrival for a sample of United and Delta flights in December 2014.

\section*{Format}

A dataset with 2000 observations on the following 2 variables.
\[
\begin{aligned}
\text { Airline } & \text { Delta or United } \\
\text { Difference } & \text { Difference (Actual-Scheduled arrival times) }
\end{aligned}
\]

\section*{Details}

For a sample of 1000 December flights (in 2014) from each airline, we find the difference between actual and scheduled arrival times. A negative value indicates the flight arrived early.

\section*{Source}

Downloaded from the Bureau of Transportation Statistics (https://www.bts.gov/). More specific URL is https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID \(=236 \& D B_{-}\)Short_Name \(=\)OnTime.
Digits Digit Counts

\section*{Description}

Digits from social security numbers and student selected "random numbers"

\section*{Format}

A dataset with 150 observations on the following 7 variables.
\begin{tabular}{rl} 
Random & Four digit random numbers given by a sample of students \\
RND1 & First digit \\
RND2 & Second digit \\
RND3 & Third digit \\
RND4 & Fourth digit \\
SSN8 & Eighth digit of social security number \\
SSN9 & Last digit of social security number
\end{tabular}

\section*{Details}

A sample of students were asked to give a random four digit number. The numbers are given in the dataset, along with separate columns for each of the four digits. The data also show the last two digits of each student's social security number (SSN).

\section*{Source}

In-class student surveys from several classes.

\section*{DogOwner Dog/Owner matches}

\section*{Description}

Experiment to match dogs with owners

\section*{Format}

A dataset with 25 observations on the following variable.
Match Was the dog correctly paired with it's owner? no or yes

\section*{Details}

Pictures were taken of 25 owners and their purebred dogs, selected from dog parks. Study participants were shown a picture of an owner together with pictures of two dogs (the owner's dog and another random dog from the study) and asked to choose which dog most resembled the owner. Each dog-owner pair was viewed by 28 naive undergraduate judges, and the pairing was deemed "correct" (yes) if the majority of judges (more than 14) chose the correct dog to go with the owner. ** In first edition, but not as dataset in \(2 \mathrm{e}^{* *}\)

\section*{Source}

Roy and Christenfeld, Do Dogs Resemble their Owners?, Psychological Science, Vol. 15, No. 5, 2004, pp. 361-363.

\section*{DrugResistance Drug Resistance}

\section*{Description}

Effect on drug resistance by level of treatment in mice.

\section*{Format}

A dataset with 72 observations on the following 5 variables.
\[
\begin{aligned}
\text { Treatment } & \text { Untreated, Light, Moderate, or Aggressive } \\
\text { Weight } & \text { Mouse weight in grams } \\
\text { RBC } & \text { Red blood cell density } \\
\text { ResistantDensity } & \text { Density of resistant parasites } \\
\text { DaysInfectious } & \text { Days infectious with resistant parasites }
\end{aligned}
\]

\section*{Details}

In an experiment to study drug resistance in mice, groups of 18 mice were injected with a mixture of drug-resistant and drug-susceptible malaria parasites. One group received no treatment while the others got limited, moderate, or aggressive amounts of anti-malarial treatment. The weight and red blood cell density reflect the initial health of the mice. Density of resistant parasites and number of days infectious measure the effectiveness of the treatment.

\section*{Source}

Huijben S, Bell AS, Sim DG, Tomasello D, Mideo N, Day T, Read AF (2013) Aggressive chemotherapy and the selection of drug resistant pathogens. PLoS Pathogens 9(9): e1003578.
http://dx.doi.org/l0.1371/journal.ppat. 1003578
Huijben S, et al., (2013). Data from: Aggressive chemotherapy and the selection of drug resistant pathogens. Dryad Digital
Repository. http://dx.doi.org/10.5061/dryad.09qc0

\section*{EducationLiteracy Education Literacy}

\section*{Description}

Education spending and literacy rates for countries.

\section*{Format}

A dataset with 188 observations on the following 3 variables.
\begin{tabular}{rl} 
Country & Name of country \\
Education & Education spending (as a percentage of GDP) \\
Literacy & Literacy rate
\end{tabular}

\section*{Details}

For each country, we have public spending on education (as a percentage of GDP) and literacy rate (percentage of the population who can read and write).

\section*{Source}

Most recent data (as of 2015) for each country obtained from worldbank.org and http:\www.knoema.com

ElectionMargin Election Margin

\section*{Description}

Approval rating and election margin for recent presidential elections

\section*{Format}

A dataset with 12 observations on the following 5 variables.
\begin{tabular}{rl} 
Year & Certain election years from 1940-2012 \\
Candidate & Incumbent US president \\
Approval & Presidential approval rating at time of election \\
Margin & Margin of victory/defeat (as a percentage) \\
Result & Outcome of the election for the incumbent: Lost or Won
\end{tabular}

\section*{Details}

Data include US Presidential elections since 1940 in which an incumbent was running for president. The approval rating for the sitting president is compared to the margin of victory/defeat in the election.
** Updated for 2 e (original is now ElectionMargin1e) **

\section*{Source}

Silver, Nate, "Approval Ratings and Re-Election Odds", fivethirtyeight.com, posted January 28, 2011 and http:\realclearpolitics.org

ElectionMargin1e Election Margin-le

\section*{Description}

Approval rating and election margin for recent presidential elections

\section*{Format}

A data frame with 11 observations on the following 5 variables.
\begin{tabular}{rl} 
Year & Certain election years from 1940-2004 \\
Candidate & Incumbent US president \\
Approval & Presidential approval rating at time of election \\
Margin & Margin of victory/defeat (as a percentage) \\
Result & Outcome of the election for the incumbent: Lost or Won
\end{tabular}

\section*{Details}

Data include US Presidential elections since 1940 in which an incumbent was running for president. The approval rating for the sitting president is compared to the margin of victory/defeat in the election.
** From \(1 \mathrm{e}-\) dataset has been updated for 2 e **

\section*{Source}

Silver, Nate, "Approval Ratings and Re-Election Odds", fivethirtyeight.com, posted January 28, 2011.

EmployedACS Employed in American Community Survey

\section*{Description}

Employed individuals from the American Community Survey (ACS) dataset

\section*{Format}

A dataset with 431 observations on the following 9 variables.
\(\left.\begin{array}{rl}\text { Sex } & \begin{array}{l}0=\text { female and } 1=\text { male } \\
\text { Age } \\
\text { Age (years) } \\
\text { Married }\end{array} \\
0=\text { not married and } 1=\text { married } \\
\text { Income } & \text { Wages and salary for the past } 12 \text { months (in } \$ 1,000 \text { 's) } \\
\text { HoursWk } & \text { Hours of work per week } \\
\text { Race } & \text { asian, black, white, or other } \\
\text { USCitizen } & 1=\text { citizen and } 0=\text { noncitizen }\end{array}\right\}\)\begin{tabular}{rl}
\(1=\) have health insurance and \(0=\) no health insurance
\end{tabular}

\section*{Details}

This is a subset of the ACS dataset including only 431 individuals who were employed.

\section*{Source}

The full public dataset can be downloaded at
http://www.census.gov/acs/www/data documentation/pums data/, and the full list of variables are at
http://www.census.gov/acs/www/Downloads/data documentation/pums/DataDict/PUMSDataDict10.pdf
ExerciseHours Exercise Hours

\section*{Description}

Amount of exercise per week for students (and other variables)

\section*{Format}

A dataset with 50 observations on the following 7 variables.
\begin{tabular}{rl} 
Year & Year in school (1=First year,..., 4=Senior) \\
Gender & F or M \\
Hand & Left (1) or Right (r) handed? \\
Exercise & Hours of exercise per week \\
TV & Hours of TV viewing per week \\
Pulse & Resting pulse rate (beats per minute) \\
Pierces & Number of body piercings
\end{tabular}

\section*{Details}

Data from an in-class survey of statistics students asking about amount of exercise, TV viewing, handedness, gender, pulse rate, and number of body piercings.

\section*{Source}

In-class student survey.

FacebookFriends Facebook Friends

\section*{Description}

Data on number of Facebook friends and grey matter density in brain regions related to social perception and associative memory.

\section*{Format}

A dataset with 40 observations on the following 2 variables.
GMdensity Normalized z-scores of grey matter density in certain brain regions FBfriends Number of friends on Facebook

\section*{Details}

A recent study in Great Britain examines the relationship between the number of friends an individual has on Facebook and grey matter density in the areas of the brain associated with social perception and associative memory. The study included 40 students at City University London.

\section*{Source}

Kanai, R., Bahrami, B., Roylance, R., and Rees, G., "Online social network size is reflected in human brain structure," Proceedings of the Royal Society, 7 April 2012; 279(1732): 1327-1334. Data approximated from information in the article.

\section*{FatMice18 Fat Mice 18}

\section*{Description}

Weight gain for mice with different nighttime light conditions

\section*{Format}

A dataset with 18 observations on the following 2 variables.
Light Light treatment: \(\mathrm{LD}=\) normal light/dark cycle OR LL=bright light at night WgtGain4 Weight gain (grams over a four week period)

\section*{Details}

This is a subset of the LightatNight dataset, showing body mass gain in mice after 4 weeks for two of the treatment conditions: a normal light/dark cycle (LD) or a bright light on at night (LL).
** In first edition, but not \(2 \mathrm{e}^{* *}\)

\section*{Source}

Fonken, L., et. al., "Light at night increases body mass by shifting time of food intake," Proceedings of the National Academy of Sciences, October 26, 2010; 107(43): 18664-18669.
FireAnts Fire Ants

\section*{Description}

Reactions of lizards to the presence of fire ants.

\section*{Format}

A dataset with 80 observations on the following 3 variables.
Invasion Coded as Uninvaded or Invaded, depending on if the lizard comes from a region with fire ants Twitches Number of twitches the lizard makes when encountering fire ants

Flee Time for the lizard to flee in seconds (more than one minute is recorded as 61).

\section*{Details}

The red imported fire ant, Solenopsis invicta, is native to South America, but has an expansive invasive range, including much of the southern United States (invasion of this ant is predicted to go global). In the United States, these ants occupy similar habitats as fence lizards. The ants eat the lizards and the lizards eat the ants, and in either scenario the venom from the fire ant can be fatal to the lizard. The study explored the question of whether lizards learn to adapt their behavior if their environment has been invaded by fire ants by taking lizards from an uninvaded habitat (eastern Arkansas) and lizards from an invaded habitat (southern Alabama, which has been invaded for more than 70 years), exposing them to fire ants, and measuring how long it takes each lizard to flee and the number of twitches each lizard does.

\section*{Source}

Langkilde, T. (2009). "Invasive fire ants alter behavior and morphology of native lizards"", Ecology, 90(1): 208-217. Thanks to Dr. Langkilde for providing the data.
```

FisherIris Fisher's Iris Data

```

\section*{Description}

Measurements of three iris species

\section*{Format}

A dataset with 150 observations on the following 5 variables.
\begin{tabular}{rl} 
Type & Species of iris, Setosa, Virginica, or Versicolor \\
PetalLength & Petal length in mm. \\
PetalWidth & Petal width in mm. \\
SepalLength & Sepal length in mm. \\
SepalWidth & Sepal width in mm.
\end{tabular}

\section*{Details}

Data used in Fisher's 1936 paper, this famous dataset looks at measurements for samples of three different species of iris. The petal is part of the flower itself and the sepals are green leaves, directly under the petals, providing support.

\section*{Source}
R. A. Fisher (1936). "The use of multiple measurements in taxonomic problems". Annals of Eugenics 7 (2): 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x.

\section*{Description}

An experiment to look at fish respiration rates in water with different levels of calcium.

\section*{Format}

A dataset with 360 observations on the following 2 variables.
\[
\begin{aligned}
\text { Calcium } & \text { Amount of calcium in the water ( } \mathrm{mg} / \mathrm{L} \text { ) } \\
\text { GillRate } & \text { Respiration rate (beats per minute) }
\end{aligned}
\]

\section*{Details}

Fish were randomly assigned to twelve tanks with different levels (measured in \(\mathrm{mg} / \mathrm{L}\) ) of calcium. Respiration rate was measured as number of gill beats per minute.

\section*{Source}

Thanks to Prof. Brad Baldwin for supplying the data.

\section*{FishGills3 Fish Respiration and Calcium}

\section*{Description}

Respiration rate for fish in three levels of calcium.

\section*{Format}

A dataset with 90 observations on the following 2 variables.
Calcium Level of calcium Low \(0.71 \mathrm{mg} / \mathrm{L}\), Medium \(5.24 \mathrm{mg} / \mathrm{L}\), or High \(18.24 \mathrm{mg} / \mathrm{L}\) GillRate Respiration rate (beats per minute)

\section*{Details}

Fish were randomly assigned to three tanks with different levels (low, medium and high) levels of calcium. Respiration rate was measured as number of gill beats per minute.

\section*{Source}

Thanks to Prof. Brad Baldwin for supplying the data.

\section*{Flight179 \\ Flight times}

\section*{Description}

Flight times for Flight 179 (Boston-SF) and Flight 180 (SF-Boston).

\section*{Format}

A dataset with 36 observations on the following 3 variables.
Date Date of the flight (5th, 15th and 25th of each month in 2010
Flight179 Flying time (Boston-SF) in minutes
Flight180 Fllying time (SF-Boston) in minutes

\section*{Details}

United Airlines Flight 179 was a daily flight from Boston to San Francisco. Flight 180 goes in the other direction (SF to Boston). The data show the airborne flying times for each flight on the three dates each month (5th, 15th and 25th) in 2010.
** In first edition, but not in \(2 \mathrm{e}-\) replaced by Flight433 **

\section*{Source}

Data collected from the Bureau of Transportation Statistics website at http://www.bts.gov/xml/ontimesummarystatistics/src/dstat/OntimeSummaryAirtime.xml
```

Flight433 Flight 433

```

\section*{Description}

Flight times for Flight 433 (Boston-SF) in January 2016.

\section*{Format}

A dataset with 31 observations on the following 1 variable.
Airtime Airborne flying fime (in minutes) for Flight 433, Boston to San Francisco

\section*{Details}

United Airlines Flight 433 was a daily flight from Boston to San Francisco. The data show the airborne flying times for the flight on each day of January 2016.
** New to second edition, replaces Flight 179 **

\section*{Source}

Data collected from the Bureau of Transportation Statistics website at http://www.bts.gov/xml/ontimesummarystatistics/src/dstat/OntimeSummaryAirtime.xml
FloridaLakes Florida Lakes

\section*{Description}

Water quality measurements for a sample of lakes in Florida

\section*{Format}

A dataset with 53 observations on the following 12 variables.
```

 ID An identifying number for each lake
 Lake Name of the lake
 Alkalinity Concentration of calcium carbonate (in mg/L)
 pH Acidity
 Calcium Amount of calcium in water
 Chlorophyll Amount of chlorophyll in water
 AvgMercury Average mercury level for a sample of fish (large mouth bass) from each lake
 NumSamples Number of fish sampled at each lake
 MinMercury Minimum mercury level in a sampled fish
 MaxMercury Maximum mercury level in a sampled fish
 ThreeYrStdMercury Adjusted mercury level to account for the age of the fish
AgeData Mean age of fish in each sample

```

\section*{Details}

This dataset describes characteristics of water and fish samples from 53 Florida lakes. Some variables (e.g. Alkalinity, pH , and Calcium) reflect the chemistry of the water samples. Mercury levels were recorded for a sample of large mouth bass selected at each lake.

\section*{Source}

Lange, Royals, and Connor, Transactions of the American Fisheries Society (1993)

\section*{FootballBrain Football Brain Measurements}

\section*{Description}

Brain measurements for non-football players, football players with no concussion history, and football players with a concussion history.

\section*{Format}

A dataset with 75 observations on the following 5 variables.
Group Control=no football, FBNoConcuss=football player but no concussions, or FBConcuss=football player with concussion history
Hipp Total hippocampus volume, in microL
LeftHipp Left hippocampus volume, in microL
Years Number of years playing football
Cognition Cognitive testing composite reaction time score, given as a percentile

\section*{Details}

The study included 3 groups, with 25 cases in each group. The control group consisted of healthy individuals with no history of brain trauma who were comparable to the other groups in age, sex, and education. The second group consisted of NCAA Division 1 college football players with no history of concussion, while the third group consisted of NCAA Division 1 college football players with a history of concussion. High resolution MRI was used to collect brain hippocampus volume. Data were collected between June 2011 and August 2013. The data values given here are estimated from information given in the paper.

\section*{Source}

Singh R, Meier T, Kuplicki R, Savitz J, et al., "Relationship of Collegiate Football Experience and Concussion With Hippocampal Volume and Cognitive Outcome," JAMA, 311(18), 2014

\section*{GeneticDiversity Genetic Diversity}

\section*{Description}

Genetic diversity for different populations are compared to the distance from East Africa.

\section*{Format}

A dataset with 52 observations on the following 5 variables.
\begin{tabular}{rl} 
Population & Identifier for each population \\
Country & Main country where the population is found \\
Continent & Continent where the population is found \\
GeneticDiversity & A measure of genetic diversity in the population \\
Distance & Distance by land to East Africa (in km)
\end{tabular}

\section*{Details}

The data give a measure of genetic diversity for different populations and the geographic distance of each population from East Africa (Addis Ababa, Ethiopia), as one would travel over the surface of the earth by land (migration long ago is thought to have happened by land).

\section*{Source}

Calculated using data from S Ramachandran, O Deshpande, CC Roseman, NA Rosenberg, MW Feldman, LL Cavalli-Sforza. "Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa," "Proceedings of the National Academy of Sciences, 2005, 102: 15942-15947.

\section*{Description}

Internet usage for several countries

\section*{Format}

A dataset with 9 observations on the following 3 variables.
\begin{tabular}{rl} 
Country & Name of country \\
PercentFastConnection & Percent of internet users with a fast connection \\
HoursOnline & Average number of hours online in February 2011
\end{tabular}

\section*{Details}

The Nielsen Company measured connection speeds on home computers in nine different countries. Variables include the percent of internet users with a fast connection (defined as \(2 \mathrm{Mb} / \mathrm{sec}\) or faster) and the average amount of time spent online, defined as total hours connected to the web from a home computer during the month of February 2011.

\section*{Source}

NielsenWire, "Swiss Lead in Speed: Comparing Global Internet Connections", April 1, 2011
```

GPAGender GPA and Gender

```

\section*{Description}

Data from a survey of introductory statistics students.

\section*{Format}

A dataset with 343 observations on the following 6 variables.
\begin{tabular}{rl} 
Exercise & Hours of exercise (per week) \\
SAT & Combined SAT scores (out of 1600) \\
GPA & Grade Point Average (0.00-4.00 scale) \\
Pulse & Pulse rate (beats per minute) \\
Piercings & Number of body piercings \\
GenderCode & \(0=\) female or 1=male
\end{tabular}

\section*{Details}

This is a subset of the StudentSurvey dataset where cases with missing values have been dropped and gender is coded as a \(0 / 1\) indicator variable.

\section*{Source}

A first day survey over several different introductory statistics classes.

\section*{Description}

Game log data for the Golden State Warriors basketball team in 2015-2016

\section*{Format}

A dataset with 82 observations on the following 33 variables.
\begin{tabular}{rl} 
Game & ID number for each game \\
Date & Date the game was played \\
Location & Away or Home \\
Opp & Opponent team \\
Win & Game result: L or W \\
FG & Field goals made \\
FGA & Field goals attempted \\
FG3 & Three-point field goals made \\
FG3A & Three-point field goals attempted \\
FT & Free throws made \\
FTA & Free throws attempted \\
Rebounds & Total rebounds \\
OffReb & Offensive rebounds \\
Assists & Number of assists \\
Steals & Number of steals \\
Blocks & Number of shots blocked \\
Turnovers & Number of turnovers \\
Fouls & Number of fouls \\
Points & Number of points scored \\
OppFG & Opponent's field goals made \\
OppFGA & Opponent's Field goals attempted \\
OppFG3 & Opponent's Three-point field goals made \\
OppFG3A & Opponent's Three-point field goals attempted \\
OppFT & Opponent's Free throws made \\
OppFTA & Opponent's Free throws attempted \\
OppRebounds & Opponent's Total rebounds \\
OppOffReb & Opponent's Offensive rebounds \\
OppAssists & Opponent's assists \\
OppSteals & Opponent's steals \\
OppBlocks & Opponent's shots blocked \\
OppTurnovers & Opponent's turnovers \\
OppFouls & Opponent's fouls \\
OppPoints & Opponent's points scored
\end{tabular}

\section*{Details}

Information from online boxscores for all 82 regular season games played by the Golden State Warriors basketball team during the 2015-2016 season.
** Updated for second edition (original was MiamHeat dataset in 1e) **

\section*{Source}

Data for the 2015-2016 Golden State games downloaded from http://www.basketball-reference.com/teams/GSW/2016/gamelog/
```

HappyPlanetIndex Happy Planet Index

```

\section*{Description}

Measurements related to happiness and well-being for 143 countries.

\section*{Format}

A dataset with 143 observations on the following 11 variables.
```

 Country Name of country
 Region 1=Latin America, 2=Western nations, 3=Middle East, 4=Sub-Saharan Africa,
 5=South Asia, 6=East Asia, 7=former Communist countries
 Happiness Score on a 0-10 scale for average level of happiness (10 is happiest)
 LifeExpectancy Average life expectancy (in years)
Footprint Ecological footprint - a measure of the (per capita) ecological impact
HLY Happy Life Years - combines life expectancy with well-being
HPI Happy Planet Index (0-100 scale)
HPIRank HPI rank for the country
GDPperCapita Gross Domestic Product (per capita)
HDI Human Development Index
Population Population (in millions)

```

\section*{Details}

Data for 143 countries from the Happy Planet Index Project that works to quantify indicators of happiness, well-being, and ecological footprint at a country level.

\section*{Source}

Marks, N., "The Happy Planet Index", www.TED.com/talks, August 29, 2010.
Data downloaded from http://www.happyplanetindex.org/data/
HeightData Height Data

\section*{Description}

Heights measured for the same 94 children over 18 years.

\section*{Format}

A dataset with 94 observations on the following 33 variables.
```

 ID Identification number)
 Sex M or F
 Year_1 Height (in cm.) at age 1 year
 Year_1.25 Height (in cm.) at age 1.25 years
Year_1.5 Height (in cm.) at age 1.5 years
Year_1.75 Height (in cm.) at age 1.75 years
Year_2 Height (in cm.) at age 2 years
Year_3 Height (in cm.) at age 3 years
Year_4 Height (in cm.) at age 4 years
Year_5 Height (in cm.) at age 5 years
See below for full list of years...
Year_17.5 Height (in cm.) at age 17.5 years
Year_18 Height (in cm.) at age 18 years

```

\section*{Details}

In the 1940 's and 1950 's, the heights of 39 boys and 54 girls, in centimeters, were measured at 30 different time points between the ages of 1 and 18 years as part of the University of California Berkeley growth study. Ages for measurement are \(1,1,25,1,5,1,75,2,3,4,5,6,7,8,8.5,9,9.5\), \(10,10.5,11,11,5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5,17,17.5,18\).

\section*{Source}

Tuddenham, R. D., and Snyder, M. M. (1954) "Physical growth of California boys and girls from birth to age 18", University of California Publications in Child Development, 1, 183-364.
```

HockeyPenalties Hockey Penalties

```

\section*{Description}

Penalty minutes (per game) for NHL teams in 2010-11

\section*{Format}

A dataset with 30 observations on the following 2 variables.
\begin{tabular}{rl} 
Team & Name of the team \\
IMperG & Average penalty minutes per game
\end{tabular}

\section*{Details}

Data give the average number of penalty minutes for each of the 30 National Hockey League (NHL) teams during the 2010-11 regular season.

\section*{Source}

Data obtained online at www.nhl.com

HollywoodMovies Hollywood Movies

\section*{Description}

Data on movies released in Hollywood between 2007 and 2013

\section*{Format}

A dataset with 970 observations on the following 16 variables.
\begin{tabular}{rl} 
Movie & Title of movie \\
LeadStudio & Studio that released the movie \\
RottenTomatoes & Rotten Tomatoes rating (reviewers) \\
AudienceScore & Audience rating (via Rotten Tomatoes) \\
Story & General theme - one of 21 themes \\
Genre & One of 14 possible genres \\
TheatersOpenWeek & Number of screens for opening weekend \\
OpeningWeekend & Opening weekend gross (in \$ millions) \\
BOAverageOpenWeek & Average opening week box office income (per theater) \\
DomesticGross & Gross income for domestic viewers (in \$ millions) \\
ForeignGross & Gross income for foreign viewers (in \$ millions) \\
WorldGross & Gross income for all viewers (in \$ millions) \\
Budget & Production budget (in \$ millions) \\
Profitability & WorldGross as a percentage of Budget \\
OpenProfit & Percentage of budget recovered on opening weekend \\
Year & Year the movie was released
\end{tabular}

\section*{Details}

Information from 970 movies released from Hollywood between 2007 and 2013.
** This daatset is updated from an earlier version (HollywoodMovies2011) **

\section*{Source}

McCandless, D., "Most Profitable Hollywood Movies" from "Information is Beautiful" at http://www.informationisbeautiful,net.data/ and http://bit.ly/hollywoodbudgets.

\section*{HollywoodMovies2011 Hollywood Movies in 2011}

\section*{Description}

Data on movies released in Hollywood in 2011

\section*{Format}

A dataset with 136 observations on the following 14 variables.

\author{
Movie Title of movie \\ LeadStudio Studio that released the movie \\ RottenTomatoes Rotten Tomatoes rating (reviewers) \\ AudienceScore Audience rating (via Rotten Tomatoes) \\ Story General theme - one of 21 themes \\ Genre Action Adventure Animation Comedy Drama Fantasy Horror Romance Thriller \\ TheatersOpenWeek Number of screens for opening weekend \\ BOAverageOpenWeek Average opening week box office income (per theater) \\ DomesticGross Gross income for domestic viewers (in \$ millions) \\ ForeignGross Gross income for foreign viewers (in \$ millions) \\ WorldGross Gross income for all viewers (in \$ millions) \\ Budget Production budget (in \$ millions) \\ Profitability WorldGross as a percentage of Budget \\ OpeningWeekend Opening weekend gross (in \$ millions)
}

\section*{Details}

Information from 136 movies released from Hollywood in 2011.
** This dataset has been updated for 2e with more years of data (in HollywoodMovies) **

\section*{Source}

McCandless, D., "Most Profitable Hollywood Movies" from "Information is Beautiful" at http://www.informationisbeautiful,net.data/ and http://bit.ly/hollywoodbudgets.
```

HomesForSale Home for Sale

```

\section*{Description}

Data on homes for sale in four states

\section*{Format}

A dataset with 120 observations on the following 5 variables.
\begin{tabular}{rl} 
State & Location of the home: CA NJ NY PA \\
Price & Asking price (in \(\$ 1,000\) 's) \\
Size & Area of all rooms (in 1,000's sq. ft.) \\
Beds & Number of bedrooms \\
Baths & Number of bathrooms
\end{tabular}

\section*{Details}

Data for samples of homes for sale in each state, selected from zillow.com.

\section*{Source}

Data collected from www.zillow.com in 2010.

\section*{Description}

Data for a sample of homes offered for sale in California

\section*{Format}

A dataset with 30 observations on the following 5 variables.
\begin{tabular}{rl} 
State & Location of the home: CA \\
Price & Asking price (in \(\$ 1,000\) 's) \\
Size & Area of all rooms (in 1,000 's sq. ft.) \\
Beds & Number of bedrooms \\
Baths & Number of bathrooms
\end{tabular}

\section*{Details}

Data for samples of homes for sale in California, selected from zillow.com.

\section*{Source}

Data collected from www.zillow.com in 2010.

HomesForSaleCanton Homes for sale in Canton, NY

\section*{Description}

Prices of homes for sale in Canton, NY

\section*{Format}

A dataset with 10 observations on the following variable.
\[
\text { Price Asking price for the home (in } \$ 1,000 \text { 's) }
\]

\section*{Details}

Data for samples of homes for sale in Canton, NY, selected from zillow.com.

\section*{Source}

Data collected from www.zillow.com in 2010.

\section*{HomesForSaleNY Home for Sale in New York}

\section*{Description}

Data for a sample of homes offered for sale in New York State

\section*{Format}

A dataset with 30 observations on the following 5 variables.
\begin{tabular}{rl} 
State & Location of the home: NY \\
Price & Asking price (in \(\$ 1,000\) 's) \\
Size & Area of all rooms (in 1,000's sq. ft.) \\
Beds & Number of bedrooms \\
Baths & Number of bathrooms
\end{tabular}

\section*{Details}

Data for samples of homes for sale in New York, selected from zillow.com.

\section*{Source}

Data collected from www.zillow.com in 2010.

\section*{Honeybee Honeybee Colonies}

\section*{Description}

Number of honeybee colonies (1995-2012)

\section*{Format}

A dataset with 18 observations on the following 2 variables.
\[
\begin{aligned}
\text { Year } & \text { Year } \\
\text { Colonies } & \text { Estimated number of honeybee colonies in the US (in thousands) }
\end{aligned}
\]

\section*{Details}

Data collected from the USDA on the estimated number of honeybee colonies in the US for the years 1995 through 2012.

\section*{Source}

USDA National Agriculture and Statistical Services,
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1191 Accessed Septem-
ber 2015 .
```

HoneybeeCircuits Honeybee Circuits

```

\section*{Description}

Number of circuits for honeybee dances and nest quality

\section*{Format}

A dataset with 78 observations on the following 2 variables.
\[
\begin{aligned}
\text { Circuits } & \text { Number of waggle dance circuits for a returning scout bee } \\
\text { Quality } & \text { Quality of the nest site: High or Low }
\end{aligned}
\]

\section*{Details}

When honeybees are looking for a new home, they send out scouts to explore options. When a scout returns, she does a "waggle dance" with multiple circuit repetitions to tell the swarm about the option she found. The bees then decide between the options and pick the best one. Scientists wanted to find out how honeybees decide which is the best option, so they took a swarm of honeybees to an island with only two possible options for new homes: one of very high honeybee quality and one of low quality. They then kept track of the scouts who visited each option and counted the number of waggle dance circuits each scout bee did when describing the option.

\section*{Source}

Seeley, T., Honeybee Democracy, Princeton University Press, Princeton, NJ, 2010, p. 128

HoneybeeWaggle Honeybee Waggle

\section*{Description}

Honeybee dance duration and distance to nesting site

\section*{Format}

A dataset with 7 observations on the following 2 variables.
\(\begin{array}{ll}\text { Distance } & \text { Distance to the potential nest site (in meters) } \\ \text { Duration } & \text { Duration of the waggle dance (in seconds) }\end{array}\)

\section*{Details}

When honeybee scouts find a food source or a nice site for a new home, they communicate the location to the rest of the swarm by doing a "waggle dance." They point in the direction of the site
and dance longer for sites farther away. The rest of the bees use the duration of the dance to predict distance to the site.

\section*{Source}

Seeley, T., Honeybee Democracy, Princeton University Press, Princeton, NJ, 2010, p. 128
\(\qquad\)
HotDogs Hot Dog Eating Contest

\section*{Description}

Winning number of hot dogs consumed in an eating contest

\section*{Format}

A dataset with 14 observations on the following 2 variables.
Year Year of the contest: 2002-2015
HotDogs Winning number of hot dogs consumed

\section*{Details}

Every Fourth of July, Nathan's Famous in New York City holds a hot dog eating contest, in which contestants try to eat as many hot dogs (with buns) as possible in ten minutes. The winning number of hot dogs are given for each year from 2002-2015.
** Data set updated for 2e (original is now HotDogs1e) **

\section*{Source}

Downloaded from https://en.wikipedia.org/wiki/Nathan's_Hot_Dog_Eating_Contest

\section*{HotDogs1e Hot Dog Eating Contest}

\section*{Description}

Winning number of hot dogs consumed in an eating contest

\section*{Format}

A dataset with 10 observations on the following 2 variables.
Year Year of the contest: 2002-2011
HotDogs Winning number of hot dogs consumed

\section*{Details}

Every Fourth of July, Nathan's Famous in New York City holds a hot dog eating contest, in which contestants try to eat as many hot dogs (with buns) as possible in ten minutes. The winning number of hot dogs are given for each year from 2002-2011.
** From 1 e - dataset has been updated for 2 e **

\section*{Source}

Downloaded from https://en.wikipedia.org/wiki/Nathan's_Hot_Dog_Eating_Contest

HouseStarts Housing Starts

\section*{Description}

Quarterly housing starts in the United States from 2000-2015

\section*{Format}

A dataset with 64 observations on the following 3 variables.
```

 Year Year (2000 to 2015)
 Quarter Q1=Jan-Mar, Q2=Apr-June, Q3=July-Sept, Q4=Oct-Dec
Houses New US residential house construction starts (in thousands)

```

\section*{Details}

Number of new homes started in the US for each quarter from 2000-2015.

\section*{Source}

Census.gov website https://www.census.gov/econ/currentdata/
https://www.census.gov/econ/currentdata/dbsearch?program \(=\) RESCONST\&startYear \(=2000\) \&endYear \(=2016\) \& categor
```

Hurricanes Hurricanes

```

\section*{Description}

Hurricanes making landfall on the US east coast each year (1914-2014)

\section*{Format}

A dataset with 64 observations on the following 3 variables.
Year Year (1914 to 2014)
Hurricanes Number of hurricanes making landfall on US East coast

\section*{Details}

Number of hurricanes making landfall on the East coast of the United States - yearly 1914-2014

\section*{Source}

Weather Underground website at https://www.wunderground.com/hurricane/hurrarchive.asp

ICUAdmissions Intensive Care Unit Admissions

\section*{Description}

Data from patients admitted to an intensive care unit

\section*{Format}

A dataset with 200 observations on the following 21 variables.
\begin{tabular}{|c|c|}
\hline ID & Patient ID number \\
\hline Status & Patient status: \(0=\) lived or \(1=\) died \\
\hline Age & Patient's age (in years) \\
\hline Sex & \(0=\) male or \(1=\) female \\
\hline Race & Patient's race: \(1=\) white, \(2=\) black, or \(3=\) other \\
\hline Service & Type of service: \(0=\) medical or \(1=\) surgical \\
\hline Cancer & Is cancer involved? \(0=\) no or \(1=y\) es \\
\hline Renal & Is chronic renal failure involved? \(0=\) no or \(1=\) yes \\
\hline Infection & Is infection involved? \(0=\) no or \(1=\) yes \\
\hline CPR & Patient gets CPR prior to admission? 0=no or 1=yes \\
\hline Systolic & Systolic blood pressure (in mm of Hg ) \\
\hline HeartRate & Pulse rate (beats per minute) \\
\hline Previous & Previous admission to ICU wihtin 6 months? \(0=\) no or \(1=y e s\) \\
\hline Type & Admission type: \(0=\) elective or \(1=\) emergency \\
\hline Fracture & Fractured bone involved? \(0=\) no or \(1=\) yes \\
\hline P02 & Partial oxygen level from blood gases under 60? \(0=\) no or \(1=\) yes \\
\hline PH & pH from blood gas under 7.25? \(0=\) no or \(1=y\) es \\
\hline PCO2 & Partial carbon dioxide level from blood gas over 45? \(0=\) no or \(1=y\) ys \\
\hline Bicarbonate & Bicarbonate from blood gas under 18? 0=no or \(1=\) yes \\
\hline Creatinine & Creatinine from blood gas over 2.0? \(0=\) no or \(1=\) yes \\
\hline Consciousness & Level: \(0=\) conscious, \(1=\) deep stupor, or \(2=\) coma \\
\hline
\end{tabular}

\section*{Details}

Data from a sample of 200 patients following admission to an adult intensive care unit (ICU).

\section*{Source}

DASL dataset downloaded from http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html

ImmuneTea Immune Tea

\section*{Description}

Interferon gamma production and tea drinking

\section*{Format}

A dataset with 21 observations on the following 2 variables.
\[
\begin{aligned}
\text { InterferonGamma } & \text { Measure of interferon gamma production } \\
\text { Drink } & \text { Type of drink: Coffee or Tea }
\end{aligned}
\]

\section*{Details}

Eleven healthy non-tea-drinking individuals were asked to drink five or six cups of tea a day, while ten healthy non-tea and non-coffee-drinkers were asked to drink the same amount of coffee, which has caffeine but not the L-theanine that is in tea. The groups were randomly assigned. After two weeks, blood samples were exposed to an antigen and production of interferon gamma was measured.

\section*{Source}

Adapted from Kamath, et.al., "Antigens in tea-Beverage prime human V 2V2 T cells in vitro and in vivo for memory and non-memory antibacterial cytokine responses", Proceedings of the National Academy of Sciences, May 13, 2003.

\section*{InkjetPrinters Inkjet Printers}

\section*{Description}

Data from online reviews of inkjet printers

\section*{Format}

A dataset with 20 observations on the following 6 variables.
\begin{tabular}{rl} 
Model & Model name of printer \\
PPM & Printing rate (pages per minute) for a benchmark set of print jobs \\
PhotoTime & Time (in seconds) to print \(4 \times 6\) color photos \\
Price & Typical retail price (in dollars) \\
CostBW & Cost per page (in cents) for printing in black \& white \\
CostColor & Cost per page (in cents) for printing in color
\end{tabular}

\section*{Details}

Information from reviews of inkjet printers at PCMag.com in August 2011.

\section*{Source}

Inkjet printer reviews found at http://www.pcmag.com/reviews/printers, August 2011.

\section*{LifeExpectancyVehicles}

> Life Expectancy and Vehicle Registrations

\section*{Description}

Yearly US life expectancy and number of reistered vehicles (1970-2013)

\section*{Format}

A dataset with 44 observations on the following 3 variables.
\[
\begin{aligned}
\text { Year } & \text { Year } \\
\text { LifeExpectancy } & \text { Average life expectancy (in years) for babies born in the year } \\
\text { Vehicles } & \text { Number of motor vehicles registered in the US (in millions) }
\end{aligned}
\]

\section*{Details}

Life expectancy (in years for babies born each year) and number of vehicles registered in the US for each year from 1970 to 2013.
** This dataset is updated from an earlier version (now LifeExpectancyVehicles1e) **

\section*{Source}

Vehicle registrations from US Census Bureau, http://www.census.gov/compendia/statab/cats/transportation.html Lifetime data from the Centers for Disease Control and Prevention, National Center for Health Statistics, Health Data Interactive, www.cdc.gov/nchs/hdi.htm
```

LifeExpectancyVehicles1e

```

Life Expectancy and Vehicle Registrations - 1e

\section*{Description}

Yearly US life expectancy and number of reistered vehicles (1970-2009)

\section*{Format}

A dataset with 40 observations on the following 3 variables.
```

Year Year

```

\section*{LifeExpectancy Average life expectancy (in years) for babies born in the year \\ Vehicles Number of motor vehicles registered in the US (in millions)}

\section*{Details}

Life expectancy (in years for babies born each year) and number of vehicles registered in the US for each year from 1970 to 2009.
** From \(1 \mathrm{e}-\) dataset has been updated for \(2 \mathrm{e}^{* *}\)

\section*{Source}

Vehicle registrations from US Census Bureau, http://www.census.gov/compendia/statab/cats/transportation.html Lifetime data from the Centers for Disease Control and Prevention, National Center for Health Statistics, Health Data Interactive, www.cdc.gov/nchs/hdi.htm
\[
\text { LightatNight } \quad \text { Light at Night for Mice }
\]

\section*{Description}

Data on body mass gain from an experiment with mice having different nighttime light conditions

\section*{Format}

A dataset with 18 observations on the following 2 variables.
\[
\begin{aligned}
\text { Group } & \text { Light=dim light at night or Dark=dark at night } \\
\text { BMGain } & \text { Body mass gain (in grams over a three week period) }
\end{aligned}
\]

\section*{Details}

In this study, 18 mice were randomly split into two groups. One group was on a normal light/dark cycle (Dark) and the other group had light during the day and dim light at night (Light). The dim light was equivalent to having a television set on in a room. The mice in darkness ate most of their food during their active (nighttime) period, matching the behavior of mice in the wild. The mice with dim light at night, however, consumed much of their food during the well-lit rest period, when most mice are usually sleeping. The change in body mass was recorded after three weeks.
** See also LightatNight4Weeks or LightatNight8Weeks for more variables measured at other points in the same experiment, with a third experimental condition which had 9 additional mice with a bright light on all the time. **

\section*{Source}

Fonken, L., et. al., "Light at night increases body mass by shifting time of food intake," Proceedings of the National Academy of Sciences, October 26, 2010; 107(43): 18664-18669.

\section*{LightatNight4Weeks Light at Night for Mice - After 4 Weeks}

\section*{Description}

Data from an experiment with mice having different nighttime light conditions

\section*{Format}

A dataset with 27 observations on the following 9 variables.
\begin{tabular}{rl} 
Light & DM=dim light at night, LD=dark at night, or LL=bright light at night \\
BMGain & Body mass gain (in grams over a four week period) \\
Corticosterone & Blood corticosterone level (a measure of stress) \\
DayPct & Percent of calories eaten during the day \\
Consumption & Daily food consumption (grams) \\
GlucoseInt & Glucose intolerant? No or Yes \\
GTT15 & Glucose level in the blood 15 minutes after a glucose injection \\
GTT120 & Glucose level in the blood 120 minutes after a glucose injection \\
Activity & A measure of physical activity level
\end{tabular}

\section*{Details}

In this study, 27 mice were randomly split into three groups. One group was on a normal light/dark cycle (LD), one group had bright light on all the time (LL), and one group had light during the day and dim light at night (DM). The dim light was equivalent to having a television set on in a room. The mice in darkness ate most of their food during their active (nighttime) period, matching the behavior of mice in the wild. The mice in both dim light and bright light, however, consumed more than half of their food during the well-lit rest period, when most mice are sleeping. Values in this dataset are recorded after four weeks in the experimental condition.
** This dataset was named LightatNight in the first edition **
** See also LightatNight8Weeks for the same data after 8 weeks or LightatNight with just BMGain after 3 weeks for the DM and LD groups. **

\section*{Source}

Fonken, L., et. al., "Light at night increases body mass by shifting time of food intake," Proceedings of the National Academy of Sciences, October 26, 2010; 107(43): 18664-18669.

LightatNight8Weeks Light at Night for Mice - After 8 Weeks

\section*{Description}

Data from an experiment with mice having different nighttime light conditions

\section*{Format}

A dataset with 27 observations on the following 9 variables.
\begin{tabular}{rl}
\begin{tabular}{rl} 
Light
\end{tabular} & \begin{tabular}{l} 
DM=dim light at night, \(L D=\) dark at night, or \(L L=\) bright light at night \\
BMGain
\end{tabular} \\
Body mass gain (in grams over an eight week period) \\
Corticosterone & Blood corticosterone level (a measure of stress) \\
DayPct & Percent of calories eaten during the day \\
Consumption & Daily food consumption (grams) \\
GlucoseInt & Glucose intolerant? No or Yes \\
GTT15 & Glucose level in the blood 15 minutes after a glucose injection \\
GTT120 & Glucose level in the blood 120 minutes after a glucose injection \\
Activity & A measure of physical activity level
\end{tabular}

\section*{Details}

In this study, 27 mice were randomly split into three groups. One group was on a normal light/dark cycle (LD), one group had bright light on all the time (LL), and one group had light during the day and dim light at night (DM). The dim light was equivalent to having a television set on in a room. The mice in darkness ate most of their food during their active (nighttime) period, matching the behavior of mice in the wild. The mice in both dim light and bright light, however, consumed more than half of their food during the well-lit rest period, when most mice are sleeping. Values in this dataset are recorded after eight weeks in the experimental condition.
** See also LightatNight4Weeks for the same data after 4 weeks or LightatNight with just BMGain after 3 weeks for just the DM and LD groups. **

\section*{Source}

Fonken, L., et. al., "Light at night increases body mass by shifting time of food intake," Proceedings of the National Academy of Sciences, October 26, 2010; 107(43): 18664-18669.

\footnotetext{
MalevolentUniformsNFL Malevolent Uniforms NFL
}

\section*{Description}

Perceived malevolence of uniforms and penalties for National Football League (NFL) teams

\section*{Format}

A dataset with 28 observations on the following 3 variables.
\begin{tabular}{rl} 
NFLTeam & Team name \\
NFL_Malevolence & Score reflecting the "malevolence" of a team's uniform \\
ZPenYds & Z-score for penalty yards
\end{tabular}

\section*{Details}

Participants with no knowledge of the teams rated the jerseys on characteristics such as timid/aggressive, nice/mean and good/bad. The averages of these responses produced a "malevolence" index with higher scores signifying impressions of more malevolent uniforms. To measure aggressiveness, the authors used the amount of penalty yards converted to z -scores and averaged for each team over the seasons from 1970-1986.

\section*{Source}

Frank and Gilovich, "The Dark Side of Self- and Social Perception: Black Uniforms and Aggression in Professional Sports", Journal of Personality and Social Psychology, Vol. 54, No. 1, 1988, p. 7485.

MalevolentUniformsNHL Malevolent Uniforms NHL

\section*{Description}

Perceived malevolence of uniforms and penalties for National Hockey League (NHL) teams

\section*{Format}

A dataset with 28 observations on the following 3 variables.
\begin{tabular}{rl} 
NHLTeam & Team name \\
NHL_Malevolence & Score reflecting the "malevolence" of a team's uniform \\
ZPenMin & Z-score for penalty minutes
\end{tabular}

\section*{Details}

Participants with no knowledge of the teams rated the jerseys on characteristics such as timid/aggressive, nice/mean and good/bad. The averages of these responses produced a "malevolence" index with higher scores signifying impressions of more malevolent uniforms. To measure aggressiveness, the authors used the amount of penalty minutes converted to z-scores and averaged for each team over the seasons from 1970-1986.

\section*{Source}

Frank and Gilovich, "The Dark Side of Self- and Social Perception: Black Uniforms and Aggression in Professional Sports", Journal of Personality and Social Psychology, Vol. 54, No. 1, 1988, p. 7485.

MammalLongevity Mammal Longevity

\section*{Description}

Longevity and gestation period for mammals

\section*{Format}

A dataset with 40 observations on the following 3 variables.
Animal Species of mammal
Gestation Time from fertilization until birth (in days)
Longevity Average lifespan (in years)

\section*{Details}

Dataset with average lifespan (in years) and typical gestation period (in days) for 40 different species of mammals.

\section*{Source}

2010 World Almanac, pg. 292.

\section*{ManhattanApartments Manhattan Apartment Prices}

\section*{Description}

Monthly rent for one-bedroom apartments in Manhattan, NY

\section*{Format}

A dataset with 20 observations on the following variable.
Rent Montly rent in dollars

\section*{Details}

Monthly rents for a sample of 20 one-bedroom apartments in Manhattan, NY that were advertised on Craig's List in July, 2011.

\section*{Source}

Apartments advertised on Craig's List at newyork.craigslist.org, July 5, 2011.
```

MarriageAges Marriage Ages

```

\section*{Description}

Ages for husbands and wives from marriage licenses

\section*{Format}

A dataset with 100 observations on the following 2 variables.

\section*{Details}

Data from a sample of 100 marriage licences in St. Lawrence County, NY gives the ages of husbands and wives for newly married couples.

\section*{Source}

Thanks to Linda Casserly, St. Lawrence County Clerk's Office

\section*{MastersGolf Masters Golf Scores}

\section*{Description}

Scores from the 2011 Masters golf tournament

\section*{Format}

A dataset with 20 observations on the following 2 variables.
\[
\begin{array}{ll}
\text { First } & \text { First round score (in relation to par) } \\
\text { Final } & \text { Final four round score (in relation to par) }
\end{array}
\]

\section*{Details}

Data for a random sample of 20 golfers who made the cut at the 2011 Masters golf tournament.

\section*{Source}

2011 Masters tournament results at http://www.masters.com/en_US/discover/past_winners.html
```

MateChoice Fruitfly Survival - by Mate Choice

```

\section*{Description}

Number of fruitflies surviving depending on number of mating choices.

\section*{Format}

A dataset with 50 observations on the following 3 variables.
Choice Number of surviving larvae (out of 200) when female had a choice of mates
NoChoice Number of surviving larvae (out of 200) when female had only one choice for a mate Difference Choice - NoChoice

\section*{Details}

In an experiment, two hundred larvae from female fruitflies that were exposed to many male fruitflies were tracked to see how many survived. This was compared to a different set of 200 larvae from females that were exposed to only one male each. Values in the dataset give how many of the 200 larvae survived. This process was replicated 50 times, so each row of the dataset corresponds to the survival counts (and difference) for one run, starting with 200 larvae of each type.

\section*{Source}

Patridge, L. (1980). "Mate choice increases a component of offspring fitness in fruit flies," Nature, 283:290-291, 1/17/80.
```

MentalMuscle Mental Muscle

```

\section*{Description}

Comparing actual movements to mental imaging movements

\section*{Format}

A dataset with 32 observations on the following 3 variables.
\[
\begin{aligned}
\text { Action } & \text { Treatment: Actual motions or Mental imaging motions } \\
\text { PreFatigue } & \text { Time (in seconds) to complete motions before fatigue } \\
\text { PostFatigue } & \text { Time (in seconds) to complete motions after fatigue }
\end{aligned}
\]

\section*{Details}

In this study, participants were asked to either perform actual arm pointing motions or to mentally imagine equivalent arm pointing motions. Participants then developed muscle fatigue by holding a heavy weight out horizontally as long as they could. After becoming fatigued, they were asked to repeat the previous mental or actual motions. Eight participants were assigned to each group, and the time in seconds to complete the motions was measured before and after fatigue.

\section*{Source}

Data approximated from summary statistics in: Demougeot L. and Papaxanthis C., "Muscle Fatigue Affects Mental Simulation of Action," The Journal of Neuroscience, July 20, 2011, 31(29):1071210720.

MiamiHeat Miami Heat Basketball

\section*{Description}

Game log data for the Miami Heat basketball team in 2010-11

\section*{Format}

A dataset with 82 observations on the following 33 variables.
\begin{tabular}{rl} 
Game & ID number for each game \\
Date & Date the game was played \\
Location & Away or Home \\
Opp & Opponent team \\
Win & Game result: L or W \\
FG & Field goals made \\
FGA & Field goals attempted \\
FG3 & Three-point field goals made \\
FG3A & Three-point field goals attempted \\
FT & Free throws made \\
FTA & Free throws attempted \\
Rebounds & Total rebounds \\
OffReb & Offensive rebounds \\
Assists & Number of assists \\
Steals & Number of steals \\
Blocks & Number of shots blocked \\
Turnovers & Number of turnovers \\
Fouls & Number of fouls \\
Points & Number of points scored \\
OppFG & Opponet's field goals made \\
OppFGA & Opponent's Field goals attempted \\
OppFG3 & Opponent's Three-point field goals made \\
OppFG3A & Opponent's Three-point field goals attempted \\
OppFT & Opponent's Free throws made \\
OppFTA & Opponent's Free throws attempted \\
OppOffReb & Opponent's Offensive rebounds \\
OppRebounds & Opponent's Total rebounds \\
OppAssists & Opponent's assists \\
OppSteals & Opponent's steals \\
OppBlocks & Opponent's shots blocked \\
OppTurnovers & Opponent's turnovers \\
OppFouls & Opponent's fouls \\
OppPoints & Opponent's points scored
\end{tabular}

\section*{Details}

Information from online boxscores for all 82 regular season games payed by the Miami Heat basketball team during the 2010-11 season.
** This is from the first edition, updated in second edition to GSWarriors dataset **

\section*{Source}

Data for the 2010-11 Miami games downloaded from
http://www.basketball-reference.com/teams/MIA/2011/gamelog/

MindsetMatters Mindset Matters

\section*{Description}

Data from a study of perceived exercise with maids

\section*{Format}

A dataset with 75 observations on the following 14 variables.
\begin{tabular}{rl} 
Cond & Treatment condition: \(0=\) uninformed or \(1=\) informed \\
Age & Age (in years) \\
Wt & Original weight (in pounds) \\
Wt2 & Weight after 4 weeks (in pounds) \\
BMI & Original body mass index \\
BMI2 & Body mass index after 4 weeks \\
Fat & Original body fat percentage \\
Fat2 & Body fat percentage after 4 weeks \\
WHR & Original waist to hip ratio \\
WHR2 & Waist to hip ratio after 4 weeks \\
Syst & Original systolic blood pressure \\
Syst2 & Systolic blood pressure after 4 weeks \\
Diast & Original diastolic blood pressure \\
Diast2 & Diastolic blood pressure after 4 weeks
\end{tabular}

\section*{Details}

In 2007 a Harvard psychologist recruited 75 female maids working in different hotels to participate in a study. She informed 41 maids (randomly chosen) that the work they do satisfies the Surgeon General's recommendations for an active lifestyle (which is true), giving them examples for how and why their work is good exercise. The other 34 maids were told nothing (uninformed). Various chacteristics (weight, body mass index, ...) were recorded for each subject at the start of the experiment and again four weeks later. Maids with missing values for weight change have been removed.

\section*{Source}

Crum, A.J. and Langer, E.J. (2007). Mind-Set Matters: Exercise and the Placebo Effect, Psychological Science, 18:165-171. Thanks to the authors for supplying the data.
MustangPrice Mustang Prices

\section*{Description}

Price, age, and mileage for used Mustang cars at an internet website

\section*{Format}

A dataset with 25 observations on the following 3 variables.
\[
\begin{aligned}
\text { Age } & \text { Age of the car (in years) } \\
\text { Miles } & \text { Mileage on the car (in } 1,000 \text { 's) } \\
\text { Price } & \text { Asking price (in } \$ 1,000 \text { 's) }
\end{aligned}
\]

\section*{Details}

A statistics student, Gabe McBride, was interested in prices for used Mustang cars being offered for sale on an internet site. He sampled 25 cars from the website and recorded the age (in years), mileage (in thousands of miles) and asking price (in \(\$ 1,000\) 's) for each car in his sample.

\section*{Source}

Student project with data collected from autotrader.com in 2008.

NBAPlayers2011 NBA Players Data for 2010-11 Season

\section*{Description}

Data from the 2010-2011 regular season for 176 NBA basketball players.

\section*{Format}

A dataset with 176 observations on the following 25 variables.
\begin{tabular}{rl} 
Player & Name of player \\
Age & Age (in years) \\
Team & Team name \\
Games & Games played (out of 82) \\
Starts & Games started \\
Mins & Minutes played \\
MinPerGame & Minutes per game \\
FGMade & Field goals made \\
FGAttempt & Field goals attempted \\
FGPct & Field goal percentage \\
FG3Made & Three-point field goals made \\
FG3Attempt & Three-point field goals attempted \\
FG3Pct & Three-point field goal percentage \\
FTMade & Free throws made \\
FTAttempt & Free throws attempted \\
FTPct & Free throw percentage \\
OffRebound & Offensive rebounds \\
DefRebound & Defensive rebounds \\
Rebounds & Total rebounds \\
Assists & Number of assists \\
Steals & Number of steals \\
Blocks & Number of blocked shots
\end{tabular}

\section*{Turnovers Number of turnovers \\ Fouls Number of personal fouls Points Number of points scored}

\section*{Details}

Data for 176 NBA basketball players from the 2010-2011 regular season. Includes all players who averaged more than 24 minutes per game.
** From 1e - dataset has been updated (in (NBAPlayers2015) for \(2 \mathrm{e}^{* *}\)

\section*{Source}

Data downloaded from http://www.basketball-reference.com/leagues/NBA_2011_stats.html
```

NBAPlayers2015 NBA Players Data for 2014-15 Season

```

\section*{Description}

Data from the 2014-2015 regular season for 182 NBA basketball players.

\section*{Format}

A dataset with 182 observations on the following 25 variables.
Player Name of player
Position \(\mathrm{PG}=\) point guard, \(\mathrm{SG}=\) shooting guard, \(\mathrm{PF}=\) power forward, \(\mathrm{SF}=\) small forward, \(\mathrm{C}=\) center
Age Age (in years)
Team Team name
Games Games played (out of 82)
Starts Games started
Mins Minutes played
MinPerGame Minutes per game
FGMade Field goals made
FGAttempt Field goals attempted
FGPct Field goal percentage
FG3Made Three-point field goals made
FG3Attempt Three-point field goals attempted
FG3Pct Three-point field goal percentage
FTMade Free throws made
FTAttempt Free throws attempted
FTPct Free throw percentage
OffRebound Offensive rebounds
DefRebound Defensive rebounds
Rebounds Total rebounds
Assists Number of assists
Steals Number of steals
Blocks Number of blocked shots
Turnovers Number of turnovers
Fouls Number of personal fouls
Points Number of points scored

\section*{Details}

Data for 182 NBA basketball players from the 2014-2015 regular season. Includes all players who averaged more than 24 minutes per game that season.
** Data set updated for 2e (original is NBAPlayers2011) **

\section*{Source}
http://www.basketball-reference.com/leagues/NBA_2015_stats.html

NBAStandings1e NBA 2010-11 Regular Season Standings

\section*{Description}

Won-Loss record and statistics for NBA Teams in 2010-2011

\section*{Format}

A dataset with 30 observations on the following 6 variables.
\begin{tabular}{rl} 
Team & Team name \\
Wins & Number of wins in an 82 game regular season \\
Losses & Number of losses \\
WinPct & Proportion of games won \\
PtsFor & Average points scored per game \\
PtsAgainst & Average points allowed per game
\end{tabular}

\section*{Details}

Won-Loss record and regular season statistics for 30 teams in the National Basketball Association for the 2010-2011 season.
** From 1e - dataset has been updated (in NBAStandings2016) for \(2 \mathrm{e}^{* *}\)

\section*{Source}

Data downloaded from http://www.basketball-reference.com/leagues/NBA_2011_games.html

\section*{Description}

Won-Loss record and statistics for NBA Teams in 2015-2016

\section*{Format}

A dataset with 30 observations on the following 6 variables.
\begin{tabular}{rl} 
Team & Team name \\
Wins & Number of wins in an 82 game regular season \\
Losses & Number of losses \\
WinPct & Proportion of games won \\
PtsFor & Average points scored per game \\
PtsAgainst & Average points allowed per game
\end{tabular}

\section*{Details}

Won-Loss record and regular season statistics for 30 teams in the National Basketball Association for the 2015-2016 season.
** Data set updated for 2 e (original is NBAStandings1e) **

\section*{Source}

Data downloaded from http://www.basketball-reference.com/leagues/NBA_2016_games.html
```

NFLContracts2015 NFL Contracts in 2015

```

\section*{Description}

Dollar size of contracts for all NFL players in 2015

\section*{Format}

A dataset with 2099 observations on the following 5 variables.
\begin{tabular}{rl} 
Player & Player's name \\
Position & Code for the primary position of the player (QB=quarterback, etc.) \\
Team & Nickname of the team \\
TotalMoney & Total value of the contract (in millions of dollars) \\
YearlySalary & Salary (in millions of dollars) for the 2015 season
\end{tabular}

\section*{Details}

This dataset contains salary information for all National Football League (NFL) players under contract for the 2015 season. Many contracts extend over multiple years, so TotalMoney gives the overall size of the contract and YearlySalary indicates how much of that is to be paid for the 2015 season. All amounts are in millions of dollars.

\section*{Source}

Contract data collected from http://OverTheCap.com, accessed September 16, 2015.
```

NFLPreSeason Wins for NFL Teams (2005-2014)

```

\section*{Description}

Number of preseason and regular season wins for NFL teams, each year from 2005 to 2014.

\section*{Format}

A dataset with 320 observations on the following 4 variables.
\[
\begin{aligned}
\text { Team } & \text { Code for one of } 32 \text { NFL teams } \\
\text { Season } & \text { Year between 2005 and 2014 } \\
\text { Preseason } & \text { Number of preseason wins (out of } 4 \text { games) } \\
\text { RegularWins } & \text { Number of regular season wins (out of } 16 \text { games) }
\end{aligned}
\]

\section*{Details}

Number of wins in the preseason (out of 4 preseason games) and regular season (out of 16 regular season games) for each of the 32 National Football (NFL) teams over a ten year period from 2005 to 2014 .

\section*{Source}

Data available at http://www.pro-football-reference.com/.
```

NFLScores2011 NFL Game Scores in 2011

```

\section*{Description}

Results for all NFL games for the 2011 regular season

\section*{Format}

A dataset with 256 observations on the following 11 variables.
\begin{tabular}{rl} 
Week & Week of the season (1 through 17) \\
HomeTeam & Home team name \\
AwayTeam & Visiting team name \\
HomeScore & Points scored by the home team \\
AwayScore & Points scored by the visiting team \\
HomeYards & Yards gained by the home team \\
AwayYards & Yards gained by the visiting team \\
HomeTO & Turnovers lost by the home team \\
AwayTO & Turnovers lost by the visiting team \\
Date & Date of the game \\
Day & Day of the week: Mon, Sat, Sun, or Thu
\end{tabular}

\section*{Details}

Data for all 256 regular season games in the National Football League (NFL) for the 2011 season.

\section*{Source}

NFL scores and game statistics found at
http://www.pro-football-reference.com/years/2011/games.htm.
```

NutritionStudy Nutrition Study

```

\section*{Description}

Variables related to nutrition and health for 315 individuals

\section*{Format}

A dataset with 315 observations on the following 17 variables.
\begin{tabular}{rl} 
ID & ID number for each subject in this sample \\
Age & Subject's age (in years) \\
Smoke & Smoker? coded as No or Yes \\
Quetelet & Weight/(Height^2) \\
Vitamin & Vitamin use: coded as 1=Regulary, 2=Occasionally, or 3=No \\
Calories & Number of calories consumed per day \\
Fat & Grams of fat consumed per day \\
Fiber & Grams of fiber consumed per day \\
Alcohol & Number of alcoholic drinks consumed per week \\
Cholesterol & Cholesterol consumed (mg per day) \\
BetaDiet & Dietary beta-carotene consumed (mcg per day) \\
RetinolDiet & Dietary retinol consumed (mcg per day) \\
BetaPlasma & Plasma beta-carotene (ng/ml) \\
RetinolPlasma & Plasma retinol (ng/ml) \\
Gender & Coded as Female or Male \\
VitaminUse & Coded as No Occasional Regular \\
PriorSmoke & Smoking status: coded as 1=Never, 2=Former, or 3=Current
\end{tabular}

\section*{Details}

Data from a cross-sectional study to investigate the relationship between personal characteristics and dietary factors, and plasma concentrations of retinol, beta-carotene and other carotenoids. Study subjects were patients who had an elective surgical procedure during a three-year period to biopsy or remove a lesion of the lung, colon, breast, skin, ovary or uterus that was found to be non-cancerous.

\section*{Source}

Nierenberg, Stukel, Baron, Dain, and Greenberg, "Determinants of plasma levels of beta-carotene and retinol", American Journal of Epidemiology (1989). Data downloaded from http://lib.stat.cmu.edu/datasets/Plasma_Retinol.

\section*{Description}

Times for all finishers in the men's marathon at the 2012 Olympics

\section*{Format}

A data frame with 85 observations on the following 4 variables.
Athlete Name of marathoner
Country Nationality of marathoner (3 letter country code)
Time Time as H:MM:SS
Minutes Time in minutes

\section*{Details}

Results for all finishers in the 2012 Men's Olympic marathon in London, England.
** This is an updated version (previous is now in OlympicMarathon1e) **

\section*{Source}
http://www.olympic.org/olympic-results/london-2012/athletics/marathon-m, accessed October 2015.

\section*{OlympicMarathon1e 2008 Olympic Men's Marathon}

\section*{Description}

Times for all finishers in the men's marathon at the 2008 Olympics

\section*{Format}

A data frame with 76 observations on the following 5 variables.
\begin{tabular}{rl} 
Rank & Order of finish \\
Athlete & Name of marathoner \\
Nationality & Country of marathoner \\
Time & Time as H:MM:SS \\
Minutes & Time in minutes
\end{tabular}

\section*{Details}

Results for all finishers in the 2008 Men's Olympic marathon in Beijing, China.
** This 1 e version has been updated for \(2 \mathrm{e}^{* *}\)

\section*{Source}
http://2008olympics.runnersworld.com/2008/08/mens-marathon-results.html

\section*{OrganicEffect Eating Organic Foods}

\section*{Description}

Data comparing pesticide levels in family members when eating non-organic vs organic food

\section*{Format}

A dataset with 160 observations on the following 6 variables.
\[
\begin{aligned}
\text { Person } & \text { Code for family member, Father, Mother, GirlA, GirlB, Boy } \\
\text { Pesticide } & \text { One of eight different pesticides measured } \\
\text { Day } & \text { Day of the measurement (Day1, Day3, Day4, or Day6) } \\
\text { NonOrganic } & \text { Level of the pesticide after eating a non-organic diet } \\
\text { Organic } & \text { Level of the pesticide after eating an organic diet } \\
\text { Diff } & \text { Difference = NonOrganic - Organic }
\end{aligned}
\]

\section*{Details}

A study looked at a Swedish family that ate a conventional diet (non-organic), and then had them eat only organic for two weeks. Pesticide concentrations for several different pesticides were measured in micrograms/g creatinine by testing morning urine. Multiple measurements were taken for each person before the switch to organic foods, and then again after participants had been eating organic for at least one week.

\section*{Source}

Magner, J., Wallberg, P., Sandberg, J., and Cousins, A.P. (2015). "Human exposure to pesticides from food: A pilot study," IVL Swedish Environmental Research Institute.
https://www.coop.se/PageFiles/429812/Coop\%20Ekoeffekten_Report\%20ENG.pdf, January 2015

\section*{OttawaSenators \\ Ottawa Senators Hockey Team}

\section*{Description}

Data for 24 players on the 2014-2105 Ottawa Senators NHL team

\section*{Format}

A dataset with 24 observations on the following 10 variables.
```

 Player Players name
 Position $\quad D=$ defense, $C=$ center, $\mathrm{RW}=$ right wing, $\mathrm{LW}=$ left wing
Age Age (in years)
Games Games played in the 2014-15 NHL season (out of 82)
Goals Goals

```
```

 Assists Assists
 Points Goals + Assists
 PlusMinus Difference between (even strength) goals for and against while on ice
 PenMins Number of penalty minutes
 MinPerGame Average minutes on the ice per game

```

\section*{Details}

Data for all players (except goalies) who played at least 10 games with the Ottawa Senators hockey team in the 2014-15 NHL season.
** This is an updated version (previous version is now in OttawaSenators1e) **

\section*{Source}
http://www.hockey-reference.com/teams/OTT/2015.html, accessed October 2015.
```

OttawaSenators1e Ottawa Senators Hockey Team

```

\section*{Description}

Data for 24 players on the 2009-10 Ottawa Senators

\section*{Format}

A dataset with 24 observations on the following 2 variables.
\[
\text { Points Number of points (goals }+ \text { assists) scored }
\]

PenMins Number of penalty minutes

\section*{Details}

Points scored and penalty minutes for 24 players (excluding goalies) playing ice hockey for the Ottawa Senators during the 2009-10 NHL regular season.
** From 1 e - dataset has been updated for \(2 \mathrm{e}^{* *}\)

\section*{Source}

Data obtained from http://senators.nhl.com/club/stats.htm.
PizzaGirl Pizza Girl Tips

\section*{Description}

Data on tips for pizza deliveries

\section*{Format}

A dataset with 24 observations on the following 2 variables.
Tip Amount of tip (in dollars)
Shift Data collected over three different shifts

\section*{Details}
"Pizza Girl" collected data on her deliveries and tips over three different evening shifts.

\section*{Source}

Pizza Girl: Statistical Analysis at
http://slice.seriouseats.com/archives/2010/04/statistical-analysis-of-a-pizza-delivery-shift-20100429.html.
```

QuizPulse10 Quiz vs Lecture Pulse Rates

```

\section*{Description}

Paired data with pulse rates in a lecture and during a quiz for 10 students

\section*{Format}

A dataset with 10 observations on the following 3 variables.
Student ID number for the student
Quiz Pulse rate (beats per minute) during a quiz
Lecture Pulse rate (beats per minute) during a lecture

\section*{Details}

Ten students in an introductory statistics class measured their pulse rate (beats per minute) in two settings: first, in the middle of a regular class lecture and second, while taking an in-class quiz.

\section*{Source}

In-class data collection
\begin{tabular}{ll}
\hline RandomP50N200 \(\quad\) Simulated proportions \\
\hline
\end{tabular}

\section*{Description}

Counts and proportions for 5000 simulated samples with \(\mathrm{n}=200\) and \(\mathrm{p}=0.50\)

\section*{Format}

A dataset with 5000 observations on the following two variables
Count Number of simulated "yes" responses in 200 trials
Phat Sample proportion (Count/200)

\section*{Details}

Results from 5000 simulations of samples of size \(n=200\) from a population with proportion of "yes" responses at \(\mathrm{p}=0.50\).

\section*{Source}

Computer simulation
RestaurantTips Restaurant Tips

\section*{Description}

Tip data from the First Crush Bistro

\section*{Format}

A dataset with 157 observations on the following 7 variables.
Bill Size of the bill (in dollars)
Tip Size of the tip (in dollars)
Credit Paid with a credit card? n or y
Guests Number of people in the group
Day Day of the week: m=Monday, \(\mathrm{t}=\) Tuesday, \(\mathrm{w}=\) Wednesday, th=Thursday, or \(\mathrm{f}=\) Friday
Server Code for specfic waiter/waitress: A, B, or C
PctTip Tip as a percentage of the bill

\section*{Details}

The owner of a bistro called First Crush in Potsdam, NY was interested in studying the tipping patterns of his customers. He collected restaurant bills over a two week period that he believes provide a good sample of his customers. The data recorded from 157 bills include the amount of the bill, size of the tip, percentage tip, number of customers in the group, whether or not a credit card was used, day of the week, and a coded identity of the server.

\section*{Source}

Thanks to Tom DeRosa at First Crush for providing the tipping data.

\section*{RetailSales Retail Sales}

\section*{Description}

Monthly U.S. Retail Sales

\section*{Format}

A dataset with 136 observations on the following 3 variables.
\begin{tabular}{rl} 
Month & Month of the year \\
Year & Years from 2000 to 2011 \\
Sales & U.S. retail sales (in billions of dollars)
\end{tabular}

\section*{Details}

Data show the monthly retail sales (in billions) for the U.S. economy in each month from January 2000 through April 2011.

\section*{Source}

Data downloaded from http://www.census.gov/retail/

\section*{RockandRoll Rock \& Roll Hall of Fame}

\section*{Description}

Groups and Individuals in the Rock and Roll Hall of Fame

\section*{Format}

A dataset with 303 observations on the following 4 variables.
Inductee Name of the group or individual
FemaleMembers Yes if individual or member of the group is female, otherwise No
Category Type of individual or group: Performer, Non-performer, Early Influence, Lifetime Achievement, Sideman
People Number of people in the group

\section*{Details}

All inductees of the Rock \& Roll Hall of Fame as of 2015.
** Data set updated for 2e (original is RockandRoll1e) **

\section*{Source}

Rock \& Roll Hall of Fame website, http://rockhall.com/inductees/alphabetical/
RockandRoll1e Rock \& Roll Hall of Fame

\section*{Description}

Groups and Individuals in the Rock and Roll Hall of Fame

\section*{Format}

A dataset with 273 observations on the following 4 variables.

Inductee Name of the group or individual
FemaleMembers Yes if individual or member of the group is female, otherwise No
Category Type of individual or group: Performer, Non-performer, Early Influence, Lifetime Achievement, Sideman
People Number of people in the group

\section*{Details}

All inductees of the Rock \& Roll Hall of Fame as of 2012.
** From \(1 \mathrm{e}-\) dataset has been updated for \(2 \mathrm{e}^{* *}\)

\section*{Source}

Rock \& Roll Hall of Fame website, http://rockhall.com/inductees/alphabetical/
```

SalaryGender Salary and Gender

```

\section*{Description}

Salaries for college teachers

\section*{Format}

A dataset with 100 observations on the following 4 variables.
\begin{tabular}{rl} 
Salary & Annual salary in \(\$ 1,000\) 's \\
Gender & \(0=\) female or \(1=\) male \\
Age & Age in years \\
PhD & \(1=\) have PhD or \(0=\) no PhD
\end{tabular}

\section*{Details}

A random sample of college teachers taken from the 2010 American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS).

\section*{Source}

Downloaded from https://www.census.gov/programs-surveys/acs/data/pums.html

\section*{SampCountries Sample of Countries}

\section*{Description}

Data on a sample of fifty countries of the world (2014)

\section*{Format}

A dataset with 50 observations on the following 25 variables.
```

 Country Name of the country
 LandArea Size in 1000 sq. kilometers
 Population Population in millions
 Density Number of people per square kilometer
 GDP Gross Domestic Product (in $US) per capita
 Rural Percentage of population living in rural areas
 CO2 CO2 emissions (metric tons per capita)
 PumpPrice Price for a liter of gasoline ($US)
 Military Percentage of government expenditures directed toward the military
 Health Percentage of government expenditures directed towards healthcare
 ArmedForces Number of active duty military personnel (in 1,000's)
 Internet Percentage of the population with access to the internet
 Cell Cell phone subscriptions (per 100 people)
 HIV Percentage of the population with HIV
 Hunger Percent of the population considered undernourished
 Diabetes Percent of the population diagnosed with diabetes
 BirthRate Births per }1000\mathrm{ people
 DeathRate Deaths per 1000 people
 ElderlyPop Percentage of the population at least 65 years old
 LifeExpectancy Average life expectancy (years)
Female Labor Percent of females 15-64 in the labor force
Unemployment Percent of labor force unemployed
Energy Energy usage (kilotons of oil equivalent)
Electricity Electric power consumption (kWh per capita)
Developed Categories for kilowatt hours per capita, 1= under 2500, 2=2500 to 5000, 3=over 5000

```

\section*{Details}

Data from AllCountries for a random sample of 50 countries. Data for 2012- -2014 to avoid many missing values in more recent years.
** Updated for 2e (Original is now SampCountries1e) **

\section*{Source}

Data collected from the World Bank website, http://www.worldbank.org.
```

SampCountries1e Sample of Countries - le

```

\section*{Description}

Data on a sample of fifty countries of the world (2008)

\section*{Format}

A dataset with 50 observations on the following 13 variables.
\begin{tabular}{rl} 
Country & Name of the country \\
LandArea & Size in sq. kilometers \\
Population & Population in millions \\
Energy & Energy usage (kilotons of oil) \\
Rural & Percentage of population living in rural areas \\
Military & Percentage of government expenditures directed toward the military \\
Health & Percentage of government expenditures directed towards healthcare \\
HIV & Percentage of the population with HIV \\
Internet & Percentage of the population with access to the internet \\
Developed & Categories for kilowat hours per capita: \(1=\) under \(2500,2=2500\) to \(5000,3=\) over 5000 \\
BirthRate & Births per 1000 people \\
ElderlyPop & Percentage of the population at least 65 years old \\
LifeExpectancy & Average life expectancy (in years)
\end{tabular}

\section*{Details}

A subset of data from AllCountries for a random sample of 50 countries in 2008.
** From \(1 \mathrm{e}-\) dataset has been updated for \(2 \mathrm{e}^{* *}\)

\section*{Source}

Data collected from the World Bank website, http://www.worldbank.org.
```

SandP500 S\&P 500 Prices

```

\section*{Description}

Daily data for S\&P 500 Stock Index

\section*{Format}

A dataset with 252 observations on the following 6 variables.
\[
\begin{aligned}
\text { Date } & \text { Trading date } \\
\text { Open } & \text { Opening value } \\
\text { High } & \text { High point for the day } \\
\text { Low } & \text { Low point for the day } \\
\text { Close } & \text { Closing value } \\
\text { Volume } & \text { Shares traded (in millions) }
\end{aligned}
\]

\section*{Details}

Daily prices for the S\&P 500 Stock Index for trading days in 2014.
** Data set updated for 2 e (original is SandP5001e) **

\section*{Source}

Downladed from http://finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices

\section*{SandP5001e \\ \(S \& P 500\) Prices}

\section*{Description}

Daily data for S\&P 500 Stock Index

\section*{Format}

A dataset with 252 observations on the following 6 variables.
\begin{tabular}{rl} 
Date & Trading date \\
Open & Opening value \\
High & High point for the day \\
Low & Low point for the day \\
Close & Closing value \\
Volume & Shares traded (in millions)
\end{tabular}

\section*{Details}

Daily prices for the S\&P 500 Stock Index for trading days in 2010.
** From \(1 \mathrm{e}-\) dataset has been updated for 2 e **

\section*{Source}

Downladed from http:///finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices

\section*{SandwichAnts Sandwich Ants}

\section*{Description}

Ant counts on samples of different sandwiches

\section*{Format}

A dataset with 24 observations on the following 5 variables.
Butter Butter on the sandwich? no (Cases with Butter=yes are in SandwichAnts2)
Filling Type of filling: Ham \& Pickles, Peanut Butter, or Vegemite
Bread Type of bread: Multigrain, Rye, White, or Wholemeal
Ants Number of ants on the sandwich
Order Trial number

\section*{Details}

As young students, Dominic Kelly and his friends enjoyed watching ants gather on pieces of sandwiches. Later, as a university student, Dominic decided to study this with a more formal experiment. He chose three types of sandwich fillings (vegemite, peanut butter, and ham \& pickles), four types of bread (multigrain, rye, white, and wholemeal), and put butter on some of the sandwiches. To conduct the experiment he randomly chose a sandwich, broke off a piece, and left it on the ground near an ant hill. After several minutes he placed a jar over the sandwich bit and counted the number of ants. He repeated the process, allowing time for ants to return to the hill after each trial, until he had two samples for each combination of the factors.
This dataset has only sandwiches with no butter. The data in SandwichAnts2 adds information for samples with butter.

\section*{Source}

Margaret Mackisack, "Favourite Experiments: An Addendum to What is the Use of Experiments Conducted by Statistics Students?", Journal of Statistics Education (1994)
http://www.amstat.org/publications/jse/v2n1/mackisack.supp.html

\section*{Description}

Ant counts on samples of different sandwiches

\section*{Format}

A dataset with 48 observations on the following 5 variables.
Butter Butter on the sandwich? no or yes
Filling Type of filling: Ham \& Pickles, Peanut Butter, or Vegemite

\footnotetext{
Bread Type of bread: Multigrain, Rye, White, or Wholemeal
Ants Number of ants on the sandwich
Order Trial number
}

\section*{Details}

As young students, Dominic Kelly and his friends enjoyed watching ants gather on pieces of sandwiches. Later, as a university student, Dominic decided to study this with a more formal experiment. He chose three types of sandwich fillings (vegemite, peanut butter, and ham \& pickles), four types of bread (multigrain, rye, white, and wholemeal), and put butter on some of the sandwiches.
To conduct the experiment he randomly chose a sandwich, broke off a piece, and left it on the ground near an ant hill. After several minutes he placed a jar over the sandwich bit and counted the number of ants. He repeated the process, allowing time for ants to return to the hill after each trial, until he had two samples for each combination of the three factors.

\section*{Source}

Margaret Mackisack, "Favourite Experiments: An Addendum to What is the Use of Experiments Conducted by Statistics Students?", Journal of Statistics Education (1994)
http://www.amstat.org/publications/jse/v2n1/mackisack.supp.html

\section*{SkateboardPrices Skateboard Prices}

\section*{Description}

Prices of skateboards for sale online

\section*{Format}

A dataset with 20 observations on the following variable.

> Price Selling price in dollars

\section*{Details}

Prices for skateboards offered for sale on eBay.

\section*{Source}

Random sample taken from all skateboards available for sale on eBay on February 12, 2012.
SleepCaffeine Sleep Caffeine

\section*{Description}

Experiment to compare word recall after sleep or caffeine

\section*{Format}

A dataset with 24 observations on the following 2 variables.
\begin{tabular}{ll} 
Group & Treatment: Caffeine or Sleep \\
Words & Number of words recalled
\end{tabular}

\section*{Details}

A random sample of 24 adults were divided equally into two groups and given a list of 24 words to memorize. During a break, one group takes a 90 minute nap while another group is given a caffeine pill. The response variable is the number of words participants are able to recall following the break.

\section*{Source}

Mednick, Cai, Kanady, and Drummond, "Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory", Behavioural Brain Research, 193 (2008), 79-86.
```

SleepStudy Sleep Study

```

\section*{Description}

Data from a study of sleep patterns for college students.

\section*{Format}

A dataset with 253 observations on the following 27 variables.
\begin{tabular}{rl} 
Gender & 1=male, 0=female \\
ClassYear & Year in school, 1=first year, ..., 4=senior \\
LarkOwl & Early riser or night owl? Lark, Nei ther, or Owl \\
NumEarlyClass & Number of classes per week before 9 am \\
EarlyClass & Indicator for any early classes \\
GPA & Grade point average (0-4 scale) \\
ClassesMissed & Number of classes missed in a semester \\
CognitionZscore & Z-score on a test of cognitive skills \\
PoorSleepQuality & Measure of sleep quality (higher values are poorer sleep) \\
DepressionScore & Measure of degree of depression \\
AnxietyScore & Measure of amount of anxiety \\
StressScore & Measure of amount of stress \\
DepressionStatus & Coded depression score: normal, moderate, or severe \\
AnxietyStatus & Coded anxiety score: normal, moderate, or severe \\
Stress & Coded stress score: normal or high \\
DASScore & Combined score for depression, anxiety and stress \\
Happiness & Measure of degree of happiness \\
AlcoholUse & Self-reported: Abstain, Light, Moderate, or Heavy \\
Drinks & Number of alcoholic drinks per week \\
WeekdayBed & Average weekday bedtime (24.0=midnight) \\
WeekdayRise & Average weekday rise time ( \(8.0=8\) am)
\end{tabular}
\begin{tabular}{rl} 
WeekdaySleep & Average hours of sleep on weekdays \\
WeekendBed & Average weekend bedtime \((24.0=\) midnight \()\) \\
WeekendRise & Average weekend rise time \((8.0=8 \mathrm{am})\) \\
WeekendSleep & Average weekend bedtime \((24.0=\) midnight \()\) \\
AverageSleep & Average hours of sleep for all days \\
AllNighter & Had an all-nighter this semester? \(1=y e s, 0=\) no
\end{tabular}

\section*{Details}

The data were obtained from a sample of students who did skills tests to measure cognitive function, completed a survey that asked many questions about attitudes and habits, and kept a sleep diary to record time and quality of sleep over a two week period.

\section*{Source}

Onyper, S., Thacher, P., Gilbert, J., Gradess, S., "Class Start Times, Sleep, and Academic Performance in College: A Path Analysis," April 2012; 29(3): 318-335. Thanks to the authors for supplying the data.
Smiles Smiles

\section*{Description}

Experiment to study effect of smiling on leniency in judicial matters

\section*{Format}

A dataset with 68 observations on the following 2 variables.
Leniency Score assigned by a judgment panel (higher is more lenient)
Group Treatment group: neutral or smile

\section*{Details}

Hecht and LeFrance conducted a study examining the effect of a smile on the leniency of disciplinary action for wrongdoers. Participants in the experiment took on the role of members of a college disciplinary panel judging students accused of cheating. For each suspect, along with a description of the offense, a picture was provided with either a smile or neutral facial expression. A leniency score was calculated based on the disciplinary decisions made by the participants.

\section*{Source}

LaFrance, M., \& Hecht, M. A., "Why smiles generate leniency", Personality and Social Psychology Bulletin, 21, 1995, 207-214.
```

SpeedDating Speed Dating

```

\section*{Description}

Data from a sample of four minute speed dates.

\section*{Format}

A dataset with 276 observations on the following 22 variables.
```

 DecisionM Would the male like another date? 1=yes 0=no
 DecisionF Would the female like another date? 1=yes 0=no
 LikeM How much the male likes his partner (1-10 scale)
 LikeF How much the female likes her partner (1-10 scale)
 PartnerYesM Male's estimate of chance the female wants another date (1-10 scale)
 PartnerYesF Female's estimate of chance the male wants another date (1-10 scale)
 AgeM Male's age (in years)
 AgeF Females age (in years)
 RaceM Male's race: Asian Black Caucasian Latino Other
 RaceF Female's race: Asian Black Caucasian Latino Other
 AttractiveM Male's rating of female's attractiveness (1-10 scale)
 AttractiveF Female's rating of male's attractiveness (1-10 scale)
 SincereM Male's rating of female's sincerity (1-10 scale)
 SincereF Female's rating of male's sincerity (1-10 scale)
 IntelligentM Male's rating of female's intelligence (1-10 scale)
 IntelligentF Female's rating of male's intelligence (1-10 scale)
 FunM Male's rating of female as fun (1-10 scale)
 FunF Female's rating of male as fun (1-10 scale)
 AmbitiousM Male's rating of female's ambition (1-10 scale)
 AmbitiousF Female's rating of male's ambition (1-10 scale)
 SharedInterestsM Male's rating of female's shared interests (1-10 scale)
 SharedInterestsF Female's rating of male's shared interests (1-10 scale)
    ```

\section*{Details}

Participants were students at Columbia's graduate and professional schools, recruited by mass email, posted fliers, and fliers handed out by research assistants. Each participant attended one speed dating session, in which they met with each participant of the opposite sex for four minutes. Order and session assignments were randomly determined. After each four minute "speed date," participants filled out a form rating their date on a scale of 1-10 on various attributes. Only data from the first date in each session is recorded here.

\section*{Source}

Gelman, A. and Hill, J., Data analysis using regression and multilevel/hierarchical models, Cambridge University Press: New York, 2007

SplitBill Split Bill vs Individual Meal Costs

\section*{Description}

Meal costs when ordering individually vs splitting a bill

\section*{Format}

A dataset with 48 observations on the following 4 variables.
\[
\begin{aligned}
\text { Payment } & \text { Payment method: Individual or Split } \\
\text { Sex } & \mathrm{F}=\text { female or } M \text { = male } \\
\text { Items } & \text { Number of items ordered } \\
\text { Cost } & \text { Cost of items ordered in Israeli new shekel's (ILS) }
\end{aligned}
\]

\section*{Details}

Subjects were 48 Israeli students who were randomly assigned to eat in groups of six (three males and three females) at a restaurant. Half the groups were told that they would pay for meals individually and half were told that the group would split the bill equally. The number of items ordered and cost (in Israeli new shekels) was recorded for each individual.

\section*{Source}

Gneezy, U.,Haruvy, E., and Yafe, H. "The Inefficiency of Splitting the Bill,"" The Economic Journal, 2004; 114, 265-280.

\section*{StatGrades Statistics Exam Grades}

\section*{Description}

Grades on statistics exams

\section*{Format}

A dataset with 50 observations on the following 3 variables.
Exam1 Score (out of 100 points) on the first exam
Exam2 Score (out of 100 points) on the second exam
Final Score (out of 100 points) on the final exam

\section*{Details}

Exam scores for a sample of students who completed a course using Statistics: Unlocking the Power of Data as a text. The dataset contains scores on Exam1 (Chapters 1 to 4), Exam2 (Chapters 5 to 8), and the Final exam (entire book).

\section*{Source}

Random selection of students in an introductory statistics course.
```

StatisticsPhD Statistics PhD Programs

```

\section*{Description}

Enrollments in Statistics PhD Programs

\section*{Format}

A dataset with 82 observations on the following 3 variables.
University Name of the school
Department Type of department: Biostatistics or Statistics
FTGradEnrollment Full time graduate student enrollment

\section*{Details}

Graduate student enrollments in Statistics and Biostatistics departments in 2009. The list does not include combined departments of mathematics and statistics and does not include departments that did not reply to the AMS survey.

\section*{Source}

The full list of the 82 Group IV departments was obtained at http://www.ams.org/profession/data/annual-survey/group_iv.
Data on enrollment were obtained primarily from Assistantships and Graduate Fellowships in the Mathematical Sciences, 2009, American Mathematical Society.
```

StockChanges Stock Changes

```

\section*{Description}

Stock price change for a sample of stocks from the S\&P 500 (August 2-6, 2010)

\section*{Format}

A dataset with 50 observations on the following variable.
SPChange Change in stock price (in dollars)

\section*{Details}

A random sample of 50 companies from Standard \& Poor's index of 500 companies was selected. The change in the price of the stock (in dollars) over the 5-day period from August 2-6, 2010 was recorded for each company in the sample.

\section*{Source}

Data obtained from http://money.cnn.com/data/markets/sandp/
StorySpoilers Story Spoilers

\section*{Description}

Ratings for stories with and without spoilers

\section*{Format}

A dataset with 12 observations on the following 3 variables.
\begin{tabular}{rl} 
Story & ID for story \\
Spoiler & Average (0-10) rating for spoiler version \\
Original & Average (0-10) rating for original version
\end{tabular}

\section*{Details}

This study investigated whether a story spoiler that gives away the ending early diminishes suspense and hurts enjoyment. For twelve different short stories, the study's authors created a second version in which a spoiler paragraph at the beginning discussed the story and revealed the outcome. Each version of the twelve stories was read by at least 30 people and rated on a 1 to 10 scale to create an overall rating for the story, with higher ratings indicating greater enjoyment of the story. Stories 1 to 4 were ironic twist stories, stories 5 to 8 were mysteries, and stories 9 to 12 were literary stories.

\section*{Source}

Leavitt, J. and Christenfeld, N., "Story Spoilers Don’t Spoil Stories," Psychological Science, published OnlineFirst, August 12, 2011.

\section*{StressedMice Stressed Mice}

\section*{Description}

Time in darkness for mice in different environments

\section*{Format}

A dataset with 14 observations on the following 2 variables.

\author{
Time Time spent in darkness (in seconds) \\ Environment Type of environment: Enriched or Standard
}

\section*{Details}

In the study, mice were randomly assigned to either an enriched environment where there was an exercise wheel available, or a standard environment with no exercise options. After three weeks in the specified environment, for five minutes a day for two weeks, the mice were each exposed to a "mouse bully" - a mouse who was very strong, aggressive, and territorial. One measure of mouse anxiety is amount of time hiding in a dark compartment, with mice who are more anxious spending more time in darkness. The amount of time spent in darkness is recorded for each of the mice.

\section*{Source}

Data approximated from summary statistics in: Lehmann and Herkenham, "Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway", The Journal of Neuroscience, April 20, 2011, 31(16):61596173.
```

StudentSurvey Student Survey Data

```

\section*{Description}

Data from a survey of students in introductory statistics courses

\section*{Format}

A dataset with 362 observations on the following 17 variables.
\begin{tabular}{rl} 
Year & Year in school \\
Gender & Student's gender: F or M \\
Smoke & Smoker? No or Yes \\
Award & Preferred award: Academy Nobel Olympic \\
HigherSAT & Which SAT is higher? Math or Verbal \\
Exercise & Hours of exercise per week \\
TV & Hours of TV viewing per week \\
Height & Height (in inches) \\
Weight & Weight (in pounds) \\
Siblings & Number of siblings \\
BirthOrder & Birth order, 1=oldest \\
VerbalSAT & Verbal SAT score \\
MathSAT & Math SAT score \\
SAT & Combined Verbal + Math SAT \\
GPA & College grade point average \\
Pulse & Pulse rate (beats per minute) \\
Piercings & Number of body piercings
\end{tabular}

\section*{Details}

Data from an in-class survey given to introductory statistics students over several years.

\section*{Source}

In-class student survey

\section*{SynchronizedMovement Synchronized Movement}

\section*{Description}

Effects of synchronized movement activities

\section*{Format}

A dataset with 264 observations on the following 11 variables.
\begin{tabular}{|c|c|}
\hline Sex & \(f=\) female or \(m=\) male \\
\hline Group & Type of activity. Coded as HS+HE, HS+LE, LS+HE, or LS+LE for High/Low Synchronizaton + High/Low Exertion \\
\hline Synch & Synchronized activity? yes or no \\
\hline Exertion & Exertion level: high or low \\
\hline PainToleranceBefore & Measure of pain tolerance ( mm Hg ) before activity \\
\hline PainTolerance & Measure of pain tolerance ( mm Hg ) after activity \\
\hline PainTolDiff & Difference (after - before) in pain tolerance \\
\hline MaxPressure & Reached the maximum pressure ( 300 mm Hg ) when testing pain tolerance (after) \\
\hline CloseBefore & Rating of closeness to the group before activity ( \(1=\) least close to \(7=\) most close) \\
\hline CloseAfter & Rating of closeness to the group after activity (1=least close to 7=most close) \\
\hline CloseDiff & Change on closeness rating (after - before) \\
\hline
\end{tabular}

\section*{Details}

From a study of 264 high school students in Brazil to examine the effect of doing synchronized movements (such as marching in step or doing synchronized dance steps) and the effect of exertion on variables, such as pain tolerance and attitudes towards others. Students were randomly assigned to activities that involved synchronized or non-synchronized movements involving high or low levels of exertion. Pain tolerance was measured with a blood pressure cuff, going to a maximum possible reading of 300 mmHg .

\section*{Source}

Tarr B, Launay J, Cohen E, and Dunbar R, "Synchrony and exertion during dance independently raise pain threshold and encourage social bonding," Biology Letters, 11(10), October 2015.
TenCountries Ten Countries

\section*{Description}

A subset of the AllCountries data for a random sample of ten countries

\section*{Format}

A dataset with 10 observations on the following 4 variables.
\begin{tabular}{rl} 
Country & Country name \\
Code & Three-letter country code \\
Area & Size in 1000 sq. kilometers \\
PctRural & Percentage of population living in rural areas
\end{tabular}

\section*{Details}

Area and percent rural for a sample of ten countries from AllCountries dataset.
** Updated for 2e (original is now TenCountries1e) **

\section*{Source}

Data collected from the World Bank website, http://www.worldbank.org.
TenCountries1e Ten Countries - Ie

\section*{Description}

A subset of the AllCountries data for a random sample of ten countries

\section*{Format}

A dataset with 10 observations on the following 4 variables.
Country Country name
Code Three-letter country code
Area Size in 1000 sq. kilometers
PctRural Percentage of population living in rural areas

\section*{Details}

Area and percent rural for a sample of ten countries from AllCountries dataset.
** From \(1 \mathrm{e}-\) dataset has been updated for 2 e **

\section*{Source}

Data collected from the World Bank website, http://www.worldbank.org.

\section*{TextbookCosts Textbook Costs}

\section*{Description}

Prices for textbooks for different courses

\section*{Format}

A data frame with 40 observations on the following 3 variables.
Field General discipline of the course: Arts, Humanities, NaturalScience, or SocialScience
Books Number of books required
Cost Total cost (in dollars) for required books

\section*{Details}

Data are from samples of ten courses in each of four disciplines at a liberal arts college. For each course the bookstore's website lists the required texts(s) and costs. Data were collected for the Fall 2011 semester.

\section*{Source}

Bookstore online site

ToenailArsenic Toenail Arsenic

\section*{Description}

Arsenic in toenails of 19 people using private wells in New Hampshire

\section*{Format}

A dataset with 19 observations on the following variable.
Arsenic Level of arsenic found in toenails (ppm)

\section*{Details}

Level of arsenic was measured in toenails of 19 subjects from New Hampshire, all with private wells as their main water source.

\section*{Source}

Adapted from Karagas, et.al.,"Toenail Samples as an Indicator of Drinking Water Arsenic Exposure", Cancer Epidemiology, Biomarkers and Prevention 1996;5:849-852.

\section*{TrafficFlow Traffic Flow}

\section*{Description}

Traffic flow times from a simulation with timed and flexible traffic lights

\section*{Format}

A dataset with 24 observations on the following 3 variables.

\author{
Timed Delay time (in minutes) for fixed timed lights \\ Flexible Delay time (in minutes) for flexible communicating lights \\ Difference Difference (Timed-Flexible) for each simulation
}

\section*{Details}

Engineers in Dresden, Germany were looking at ways to improve traffic flow by enabling traffic lights to communicate information about traffic flow with nearby traffic lights. The data show results of one experiment where they simulated buses moving along a street and recorded the delay time (in seconds) for both a fixed time and a flexible system of lights. The process was repeated under both conditions for a sample of 24 simulated scenarios.

\section*{Source}

Lammer and Helbing, "Self-Stabilizing decentralized signal control of realistic, saturated network traffic", Santa Fe Institute working paper \\# 10-09-019, September 2010.

\section*{USStates US State Data}

\section*{Description}

Various data for all 50 US States in 2014.

\section*{Format}

A dataset with 50 observations on the following 22 variables.
State State name
HouseholdIncome Median household income (in \$1,000's)
Region MW=Midwest, NE=Northeast, \(S=\) South, \(W=\) West
Population Number of residents (in millions for 2014)
EighthGradeMath Average score NAEP mathematics for 8th-grade students (2013)
HighSchool Percent of residents (ages 25-34) who are high school graduates
College Percent of residents (ages 25-34) who are college graduates
IQ Estimated mean IQ score of residents
GSP Gross state product (in \(\$ 1,000\) 's per capita in 2013)
Vegetables Percent of residents eating vegetables at least once per day
```

Fruit Percent of residents eating fruit at least once per day
Smokers Percent of residents who smoke
PhysicalActivity Percent who do 150+ minutes of aerobic physical activity per week
Obese Percent obese residents (BMI 30+)
NonWhite Percent nonwhite residents (in 2013)
HeavyDrinkers Percent heavy drinkers (men: 3+ drinks/day, women 2+ drinks/day)
Electoral Number of state votes in the presidential electoral college
ObamaVote Proportion of votes for Obama in 2012 presidential election
ObamaRomney State winner in 2012 presidential election (O=Obama, R=Romney)
TwoParents Percent of children living in two-parent households
StudentSpending School spending (in $\$ 1,000$ per pupil in 2013)
Insured Percent of adults (ages 18-64) who have any kind of health coverage

```

\section*{Details}

Information from each of the 50 states of the United States (from 2013 or 2014).
** Updated for 2e (original is now USStates1e) **

\section*{Source}
U.S. Census Bureau, 2009-2013 5-Year American Community Survey
http://factfinder.census.gov/faces/tableservices/jsf/pages/
productview.xhtml?pid=ACS_13_5YR_DP03\&src=pt
http://factfinder.census.gov/faces/tableservices/jsf/pages/
productview.xhtml?pid=ACS_13_5YR_S1501\&src=pt
http://factfinder.census.gov/faces/tableservices/jsf/pages/
productview.xhtml?pid=ACS_13_5YR_B02001\&prodType=table
http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml (Table C23008)
USStates1e US State Data

\section*{Description}

Various data for all 50 US States

\section*{Format}

A dataset with 50 observations on the following 17 variables.
\begin{tabular}{rl} 
State & Name of state \\
HouseholdIncome & Mean household income (in dollars) \\
IQ & Mean IQ score of residents \\
McCainVote & Percentage of votes for John McCain in 2008 Presidential election \\
Region & Area of the country: MW=Midwest, NE=Northeast, S=South, or W=West \\
ObamaMcCain & Which 2008 Presidential candidate won state? M=McCain or 0=Obama \\
Population & Number of residents (in millions) \\
EighthGradeMath & Average score NAEP mathematics for 8th-grade students \\
HighSchool & Percentage of high school graduates \\
GSP & Gross State Product (dollars per capita)
\end{tabular}
```

FiveVegetables Percentage of residents who eat at least five servings of fruits/vegetables per day
Smokers Percentage of residents who smoke
PhysicalActivity Percentage of residents who have competed in a physical activity in past month
Obese Percentage of residents classified as obese
College Percentage of residents with college degrees
NonWhite Percentage of residents who are not white
HeavyDrinkers Percentage of residents who drink heavily

```

\section*{Details}

Information from each of the 50 states of the United States.
** From \(1 \mathrm{e}-\) dataset has been updated for \(2 \mathrm{e}^{* *}\)

\section*{Source}

Various online sources, mostly at www.census.gov

\section*{WaterStriders Water Striders}

\section*{Description}

Mating activity for water striders

\section*{Format}

A dataset with 10 observations on the following 3 variables.
```

AggressiveMale Hyper-aggressice male in group? No or Yes
FemalesHiding Proportion of time the female water striders were in hiding
MatingActivity Measure of mean mating activity (higher numbers meaning more mating)

```

\section*{Details}

Water striders are common bugs that skate across the surface of water. Water striders have different personalities and some of the males are hyper-aggressive, meaning they jump on and wrestle with any other water strider near them. Individually, because hyper-aggressive males are much more active, they tend to have better mating success than more inactive striders. This study examined the effect they have on a group. Four males and three females were put in each of ten pools of water. Half of the groups had a hyper-aggressive male as one of the males and half did not. The proportion of time females are in hiding was measured for each of the 10 groups, and a measure of mean mating activity was also measured with higher numbers meaning more mating.

\section*{Source}

Sih, A. and Watters, J., "The mix matters: behavioural types and group dynamics in water striders," Behaviour, 2005; 142(9-10): 1423.
WaterTaste WaterTaste

\section*{Description}

Blind taste test to compare brands of bottled water

\section*{Format}

A dataset with 100 observations on the following 10 variables.
\begin{tabular}{rl} 
Gender & Gender of respondent: F=Female M=Male \\
Age & Age (in years) \\
Class & Year in school F=First year J=Junior 0=Other P SO=Sophomore SR=Senior \\
UsuallyDrink & Usual source of drinking water: Bottled, Filtered, or Tap \\
FavBotWatBrand & Favorite brand of bottled water \\
Preference & Order of perference: A=Sams Choice, B=Aquafina, C=Fiji, and D=Tap water \\
First & Top choice among Aquafina, Fiji, SamsChoice, or Tap \\
Second & Second choice \\
Third & Third choice \\
Fourth & Fourth choice
\end{tabular}

\section*{Details}

Result from a blind taste test comparing four different types of water (Sam's Choice, Aqufina, Fiji, and tap water). Participants rank ordered waters when presented in a random order.

\section*{Source}
"Water Taste Test Data" by M. Leigh Lunsford and Alix D. Dowling Finch in the Journal of Statistics Education (Vol 18, No, 1) 2010
http://www.amstat.org/publications/jse/v18n1/lunsford.pdf

\section*{Wetsuits Wetsuits}

\section*{Description}

Swim velocity (for 1500 meters) with and without wearing a wetsuit

\section*{Format}

A dataset with 12 observations on the following 4 variables.
Wetsuit Maximum swim velocity ( \(\mathrm{m} / \mathrm{sec}\) ) when wearing a wetsuit NoWetsuit Maximum swim velocity ( \(\mathrm{m} / \mathrm{sec}\) ) when wearing a regular bathing suit

Gender Gender of swimmer: F or M
Type Type of athlete: swimmer or triathlete

\section*{Details}

A study tested whether wearing wetsuits influences swimming velocity. Twelve competitive swimmers and triathletes swam 1500m at maximum speed twice each; once wearing a wetsuit and once wearing a regular bathing suit. The order of the trials was randomized. Each time, the maximum velocity in meters/sec of the swimmer was recorded.

\section*{Source}
de Lucas, R.D., Balildan, P., Neiva, C.M., Greco, C.C., Denadai, B.S. (2000). "The effects of wetsuits on physiological and biomechanical indices during swimming," Journal of Science and Medicine in Sport, 3 (1): 1-8.
```

YoungBlood Young Blood

```

\section*{Description}

Effects of transfusions of young blood on exercise endurance in mice

\section*{Format}

A dataset with 30 observations on the following 2 variables.
Plasma Whether the blood came from a Young or Old mouse
Runtime Maximum treadmill run time (in minutes) in a 90 -minute window

\section*{Details}

The data come from a study to see if transfusions of blood plasma from young mice (equivalent to about a 25 -year-old person) can counteract or reverse brain aging in old mice (equivalent to about a 70 -year-old person.) Old mice were randomly assigned to receive plasma from either a young mice or another old mouse, and exercise endurance was measured.

\section*{Source}

Data come from two references, and are estimated from summary statistics and graphs.
Sanders L, "Young blood proven good for old brain,"" Science News, 185(11), May 31, 2014.
Manisha S, et al., "Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle," Science, 9 May 2014.

\section*{Index}
*Topic datasets
ACS, 4
AllCountries, 5
AllCountries1e, 6
APMultipleChoice, 7
April14Temps, 7
April14Temps1e, 8
BaseballHits, 8
BaseballHits1e, 9
BaseballSalaries2015, 10
BaseballTimes, 10
Benford, 11
BikeCommute, 11
BodyFat, 12
BodyTemp50, 13
BootAtlantaCorr, 13
CaffeineTaps, 14
CAOSExam, 14
CarbonDioxide, 15
CarDepreciation, 15
Cars2015, 16
Cereal, 17
CityTemps, 17
CocaineTreatment, 18
ColaCalcium, 18
CommuteAtlanta, 19
CommuteStLouis, 20
CompassionateRats, 20
CricketChirps, 21
DDS, 21
DecemberFlights, 22
Digits, 22
DogOwner, 23
DrugResistance, 24
EducationLiteracy, 24
ElectionMargin, 25
ElectionMargin1e, 25
EmployedACS, 26
ExerciseHours, 27
FacebookFriends, 27
FatMice18, 28
FireAnts, 28
FisherIris, 29

FishGills12, 29
FishGills3, 30
Flight179, 30
Flight433, 31
FloridaLakes, 31
FootballBrain, 32
GeneticDiversity, 33
GlobalInternet, 33
GPAGender, 34
GSWarriors, 35
HappyPlanetIndex, 36
HeightData, 36
HockeyPenalties, 37
HollywoodMovies, 38
HollywoodMovies2011, 38
HomesForSale, 39
HomesForSaleCA, 40
HomesForSaleCanton, 40
HomesForSaleNY, 41
Honeybee, 41
HoneybeeCircuits, 42
HoneybeeWaggle, 42
HotDogs, 43
HotDogs1e, 43
HouseStarts, 44
Hurricanes, 44
ICUAdmissions, 45
ImmuneTea, 46
InkjetPrinters, 46
LifeExpectancyVehicles, 47
LifeExpectancyVehicles1e, 47
LightatNight, 48
LightatNight4Weeks, 49
LightatNight8Weeks, 49
MalevolentUniformsNFL, 50
MalevolentUniformsNHL, 51
MammalLongevity, 51
ManhattanApartments, 52
MarriageAges, 52
MastersGolf, 53
MateChoice, 53
MentalMuscle, 54
MiamiHeat, 54

MindsetMatters, 56
MustangPrice, 56
NBAPlayers2011, 57
NBAPlayers2015, 58
NBAStandings1e, 59
NBAStandings2016, 59
NFLContracts2015, 60
NFLPreSeason, 61
NFLScores2011, 61
NutritionStudy, 62
OlympicMarathon, 63
OlympicMarathon1e, 63
OrganicEffect, 64
OttawaSenators, 64
OttawaSenators1e, 65
PizzaGirl, 65
QuizPulse10, 66
RandomP50N200, 66
RestaurantTips, 67
RetailSales, 68
RockandRoll, 68
RockandRoll1e, 69
SalaryGender, 69
SampCountries, 70
SampCountries1e, 71
SandP500, 71
SandP5001e, 72
SandwichAnts, 73
SandwichAnts2, 73
SkateboardPrices, 74
SleepCaffeine, 74
SleepStudy, 75
Smiles, 76
SpeedDating, 77
SplitBill, 78
StatGrades, 78
StatisticsPhD, 79
StockChanges, 79
StorySpoilers, 80
StressedMice, 80
StudentSurvey, 81
SynchronizedMovement, 82
TenCountries, 82
TenCountries1e, 83
TextbookCosts, 84
ToenailArsenic, 84
TrafficFlow, 85
USStates, 85
USStates1e, 86
WaterStriders, 87
WaterTaste, 88
Wetsuits, 88

YoungBlood, 89
*Topic package
Lock5Data-package, 4
ACS, 4
AllCountries, 5
AllCountries1e, 6
APMultipleChoice, 7
April14Temps, 7
April14Temps1e, 8
BaseballHits, 8
BaseballHits1e, 9
BaseballSalaries2015, 10
BaseballTimes, 10
Benford, 11
BikeCommute, 11
BodyFat, 12
BodyTemp50, 13
BootAtlantaCorr, 13
CaffeineTaps, 14
CAOSExam, 14
CarbonDioxide, 15
CarDepreciation, 15
Cars2015, 16
Cereal, 17
CityTemps, 17
CocaineTreatment, 18
ColaCalcium, 18
CommuteAtlanta, 19
CommuteStLouis, 20
CompassionateRats, 20
CricketChirps, 21
DDS, 21
DecemberFlights, 22
Digits, 22
DogOwner, 23
DrugResistance, 24
EducationLiteracy, 24
ElectionMargin, 25
ElectionMargin1e, 25
EmployedACS, 26
ExerciseHours, 27
FacebookFriends, 27
FatMice18, 28
FireAnts, 28
FisherIris, 29
FishGills12, 29
FishGills3, 30
Flight179, 30

Flight433, 31
FloridaLakes, 31
FootballBrain, 32
GeneticDiversity, 33
GlobalInternet, 33
GPAGender, 34
GSWarriors, 35
HappyPlanetIndex, 36
HeightData, 36
HockeyPenalties, 37
HollywoodMovies, 38
HollywoodMovies2011, 38
HomesForSale, 39
HomesForSaleCA, 40
HomesForSaleCanton, 40
HomesForSaleNY, 41
Honeybee, 41
HoneybeeCircuits, 42
HoneybeeWaggle, 42
HotDogs, 43
HotDogs1e, 43
HouseStarts, 44
Hurricanes, 44
ICUAdmissions, 45
ImmuneTea, 46
InkjetPrinters, 46
LifeExpectancyVehicles, 47
LifeExpectancyVehicles1e, 47
LightatNight, 48
LightatNight4Weeks, 49
LightatNight8Weeks, 49
Lock5Data (Lock5Data-package), 4
Lock5Data-package, 4
MalevolentUniformsNFL, 50
MalevolentUniformsNHL, 51
MammalLongevity, 51
ManhattanApartments, 52
MarriageAges, 52
MastersGolf, 53
MateChoice, 53
MentalMuscle, 54
MiamiHeat, 54
MindsetMatters, 56
MustangPrice, 56
NBAPlayers2011, 57
NBAPlayers2015, 58
NBAStandings1e, 59
NBAStandings2016, 59

NFLContracts2015, 60
NFLPreSeason, 61
NFLScores2011, 61
NutritionStudy, 62
OlympicMarathon, 63
OlympicMarathon1e, 63
OrganicEffect, 64
OttawaSenators, 64
OttawaSenators1e, 65
PizzaGirl, 65
QuizPulse10, 66
RandomP50N200, 66
RestaurantTips, 67
RetailSales, 68
RockandRoll, 68
RockandRoll1e, 69
SalaryGender, 69
SampCountries, 70
SampCountries1e, 71
SandP500, 71
SandP5001e, 72
SandwichAnts, 73
SandwichAnts2, 73
SkateboardPrices, 74
SleepCaffeine, 74
SleepStudy, 75
Smiles, 76
SpeedDating, 77
SplitBill, 78
StatGrades, 78
StatisticsPhD, 79
StockChanges, 79
StorySpoilers, 80
StressedMice, 80
StudentSurvey, 81
SynchronizedMovement, 82
TenCountries, 82
TenCountries1e, 83
TextbookCosts, 84
ToenailArsenic, 84
TrafficFlow, 85
USStates, 85
USStates1e, 86
WaterStriders, 87
WaterTaste, 88
Wetsuits, 88
YoungBlood, 89```

